Skip to main content
Log in

Saturated Fat and Cardiovascular Health: Phenotype and Dietary Factors Influencing Interindividual Responsiveness

  • Nutrition (K. Petersen, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recent inconsistencies in nutrition research studies examining the influence of saturated fat (SFA) on cardiovascular disease (CVD) risk have led to substantial scientific debate and increased public confusion. This review will summarize metabolic characteristics and food-based factors that underlie interindividual responsiveness to SFA consumption.

Recent Findings

The magnitude of postprandial blood lipid responses to SFA intake is dependent on a number of individual factors including age, sex, and adiposity status. Further, the metabolic effects of SFA intake are influenced by the specific types of SFAs and the food matrix within which they are contained. Importantly, results from research examining the effects of SFA on CVD risk should be interpreted with consideration of the comparator nutrient (i.e., carbohydrate, monounsaturated fat, polyunsaturated fat).

Summary

A more nuanced understanding of the multitude of factors mediating the influence of SFA on lipid metabolism and CVD risk might help resolve the current controversy and inform more precise personalized recommendations for future dietary guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Micha R, Penalvo JL, Cudhea F, Imamura F, Rehm CD, Mozaffarian D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317(9):912–24.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Global Burden of Cardiovascular Diseases C, Roth GA, Johnson CO, Abate KH, Abd-Allah F, Ahmed M, et al. The burden of cardiovascular diseases among US states, 1990–2016. JAMA Cardiol. 2018;3(5):375–89.

    Article  Google Scholar 

  3. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.

    Article  Google Scholar 

  4. Baden MY, Kino S, Liu X, Li Y, Kim Y, Kubzansky LD, et al. Changes in plant-based diet quality and health-related quality of life in women. Br J Nutr. 2020;124(9):960–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, et al. Association of changes in diet quality with total and cause-specific mortality. N Engl J Med. 2017;377(2):143–53.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dietary fat and its relation to heart attacks and strokes. Report by the Central Committee for Medical and Community Program of the American Heart Association. JAMA. 1961;175:389–91.

  7. Liu AG, Ford NA, Hu FB, Zelman KM, Mozaffarian D, Kris-Etherton PM. A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutr J. 2017;16(1):53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2020–2025. 9th Edition. December 2020. 2020.

  9. Schwingshackl L, Zahringer J, Beyerbach J, Werner SS, Nagavci B, Heseker H, et al. A scoping review of current guidelines on dietary fat and fat quality. Ann Nutr Metab. 2021;77(2):65–82.

    Article  CAS  PubMed  Google Scholar 

  10. Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet. 2017;390(10107):2050–62.

    Article  CAS  PubMed  Google Scholar 

  11. de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pimpin L, Wu JH, Haskelberg H, Del Gobbo L, Mozaffarian D. Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS One. 2016;11(6):e0158118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med. 2014;160(6):398–406.

    Article  PubMed  Google Scholar 

  14. Astrup A, Magkos F, Bier DM, Brenna JT, de Oliveira Otto MC, Hill JO, et al. Saturated fats and health: a reassessment and proposal for food-based recommendations: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(7):844–57. The JACC state-of-the-art review highlights the importance of the food matrix in modifying cardiovascular disease risk of different food sources of SFA.

    Article  CAS  PubMed  Google Scholar 

  15. Lamarche B, Couture P. It is time to revisit current dietary recommendations for saturated fat. Appl Physiol Nutr Metab. 2014;39(12):1409–11.

    Article  CAS  PubMed  Google Scholar 

  16. Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, et al. Human postprandial responses to food and potential for precision nutrition. Nat Med. 2020;26(6):964–73. (This study is one of its first kind identifying the large inter-individual variability in post-prandial metabolic responses after consuming identical meals.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finking G, Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885–1964) established the cholesterol-fed rabbit as a model for atherosclerosis research. Atherosclerosis. 1997;135(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  18. Coronary heart disease in seven countries. XVII. The diet. Circulation. 1970;41(4 Suppl):I162–83.

  19. Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124(6):903–15.

    Article  CAS  PubMed  Google Scholar 

  20. Leren P. The effect of plasma cholesterol lowering diet in male survivors of myocardial infarction. A controlled clinical trial. Acta Med Scand Suppl. 1966;466:1–92.

    CAS  PubMed  Google Scholar 

  21. Dayton S, Pearce ML, Goldman H, Harnish A, Plotkin D, Shickman M, et al. Controlled trial of a diet high in unsaturated fat for prevention of atherosclerotic complications. Lancet. 1968;2(7577):1060–2.

    Article  CAS  PubMed  Google Scholar 

  22. Miettinen M, Turpeinen O, Karvonen MJ, Elosuo R, Paavilainen E. Effect of cholesterol-lowering diet on mortality from coronary heart-disease and other causes. A twelve-year clinical trial in men and women. Lancet. 1972;2(7782):835–8.

    Article  CAS  PubMed  Google Scholar 

  23. Steinberg D. Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part II: the early evidence linking hypercholesterolemia to coronary disease in humans. J Lipid Res. 2005;46(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  24. Spady DK, Dietschy JM. Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster. Proc Natl Acad Sci U S A. 1985;82(13):4526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Woollett LA, Spady DK, Dietschy JM. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J Lipid Res. 1992;33(1):77–88.

    Article  CAS  PubMed  Google Scholar 

  26. Mattson FH, Grundy SM. Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. J Lipid Res. 1985;26(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  27. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77(5):1146–55.

    Article  CAS  PubMed  Google Scholar 

  28. Wu Z, Lou Y, Qiu X, Liu Y, Lu L, Chen Q, et al. Association of cholesteryl ester transfer protein (CETP) gene polymorphism, high density lipoprotein cholesterol and risk of coronary artery disease: a meta-analysis using a Mendelian randomization approach. BMC Med Genet. 2014;15:118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380(9841):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Su X, Li G, Deng Y, Chang D. Cholesteryl ester transfer protein inhibitors in precision medicine. Clin Chim Acta. 2020;510:733–40.

    Article  CAS  PubMed  Google Scholar 

  31. Schoeneck M, Iggman D. The effects of foods on LDL cholesterol levels: a systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2021;31(5):1325–38.

    Article  CAS  PubMed  Google Scholar 

  32. Al-Shaar L, Satija A, Wang DD, Rimm EB, Smith-Warner SA, Stampfer MJ, et al. Red meat intake and risk of coronary heart disease among US men: prospective cohort study. BMJ. 2020;371:m4141. Findings from this study demonstrated that higher intakes of red meat were associated with high risk of CHD. Using plant-based protein sources as a substitute for red meat was associated with lower risk of CHD. This study is informative in providing evidence for food-based dietary recommendations.

  33. Brassard D, Arsenault BJ, Boyer M, Bernic D, Tessier-Grenier M, Talbot D, et al. Saturated fats from butter but not from cheese increase HDL-mediated cholesterol efflux capacity from J774 macrophages in men and women with abdominal obesity. J Nutr. 2018;148(4):573–80.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cruijsen E, Jacobo Cejudo MG, Kupers LK, Busstra MC, Geleijnse JM. Dairy consumption and mortality after myocardial infarction: a prospective analysis in the Alpha Omega Cohort. Am J Clin Nutr. 2021;114(1):59–69.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kouvari M, Panagiotakos DB, Chrysohoou C, Georgousopoulou EN, Yannakoulia M, Tousoulis D, et al. Dairy products, surrogate markers, and cardiovascular disease; a sex-specific analysis from the ATTICA prospective study. Nutr Metab Cardiovasc Dis. 2020;30(12):2194–206.

    Article  CAS  PubMed  Google Scholar 

  36. Sellem L, Srour B, Jackson KG, Hercberg S, Galan P, Kesse-Guyot E, et al. Consumption of dairy products and CVD risk: results from the French prospective cohort NutriNet-Sante. Br J Nutr. 2021:1–11.

  37. Trieu K, Bhat S, Dai Z, Leander K, Gigante B, Qian F, et al. Biomarkers of dairy fat intake, incident cardiovascular disease, and all-cause mortality: a cohort study, systematic review, and meta-analysis. PLoS Med. 2021;18(9):e1003763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang J, Zhou Q, Kwame Amakye W, Su Y, Zhang Z. Biomarkers of dairy fat intake and risk of cardiovascular disease: a systematic review and meta analysis of prospective studies. Crit Rev Food Sci Nutr. 2018;58(7):1122–30.

    Article  CAS  PubMed  Google Scholar 

  39. Khaw KT, Sharp SJ, Finikarides L, Afzal I, Lentjes M, Luben R, et al. Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ Open. 2018;8(3):e020167.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Teng M, Zhao YJ, Khoo AL, Yeo TC, Yong QW, Lim BP. Impact of coconut oil consumption on cardiovascular health: a systematic review and meta-analysis. Nutr Rev. 2020;78(3):249–59.

    Article  PubMed  Google Scholar 

  41. Neelakantan N, Seah JYH, van Dam RM. The effect of coconut oil consumption on cardiovascular risk factors: a systematic review and meta-analysis of clinical trials. Circulation. 2020;141(10):803–14.

    Article  PubMed  Google Scholar 

  42. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010;91(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169(7):659–69.

    Article  CAS  PubMed  Google Scholar 

  44. Farvid MS, Ding M, Pan A, Sun Q, Chiuve SE, Steffen LM, et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Circulation. 2014;130(18):1568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Hruby A, Bernstein AM, Ley SH, Wang DD, Chiuve SE, et al. Saturated fats compared with unsaturated fats and sources of carbohydrates in relation to risk of coronary heart disease: a prospective cohort study. J Am Coll Cardiol. 2015;66(14):1538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang DD, Li Y, Chiuve SE, Stampfer MJ, Manson JE, Rimm EB, et al. Association of specific dietary fats with total and cause-specific mortality. JAMA Intern Med. 2016;176(8):1134–45.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jakobsen MU, Dethlefsen C, Joensen AM, Stegger J, Tjonneland A, Schmidt EB, et al. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. Am J Clin Nutr. 2010;91(6):1764–8.

    Article  CAS  PubMed  Google Scholar 

  48. Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Balter K, Fraser GE, et al. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89(5):1425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen M, Li Y, Sun Q, Pan A, Manson JE, Rexrode KM, et al. Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. Am J Clin Nutr. 2016;104(5):1209–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kris-Etherton PM, Petersen K, Van Horn L. Convincing evidence supports reducing saturated fat to decrease cardiovascular disease risk. BMJ Nutr Prev Health. 2018;1(1):23–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Grundy SM, Vega GL. Plasma cholesterol responsiveness to saturated fatty acids. Am J Clin Nutr. 1988;47(5):822–4.

    Article  CAS  PubMed  Google Scholar 

  52. Griffin BA, Mensink RP, Lovegrove JA. Does variation in serum LDL-cholesterol response to dietary fatty acids help explain the controversy over fat quality and cardiovascular disease risk? Atherosclerosis. 2021.

  53. Vafeiadou K, Weech M, Altowaijri H, Todd S, Yaqoob P, Jackson KG, et al. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am J Clin Nutr. 2015;102(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  54. Jebb SA, Lovegrove JA, Griffin BA, Frost GS, Moore CS, Chatfield MD, et al. Effect of changing the amount and type of fat and carbohydrate on insulin sensitivity and cardiovascular risk: the RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) trial. Am J Clin Nutr. 2010;92(4):748–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cox C, Mann J, Sutherland W, Ball M. Individual variation in plasma cholesterol response to dietary saturated fat. BMJ. 1995;311(7015):1260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hurlimann T, Menuz V, Graham J, Robitaille J, Vohl MC, Godard B. Risks of nutrigenomics and nutrigenetics? What the scientists say. Genes Nutr. 2014;9(1):370.

    Article  CAS  PubMed  Google Scholar 

  57. Wohlgemuth KJ, Arieta LR, Brewer GJ, Hoselton AL, Gould LM, Smith-Ryan AE. Sex differences and considerations for female specific nutritional strategies: a narrative review. J Int Soc Sports Nutr. 2021;18(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Klingel SL, Roke K, Hidalgo B, Aslibekyan S, Straka RJ, An P, et al. Sex differences in blood HDL-c, the total cholesterol/HDL-c ratio, and palmitoleic acid are not associated with variants in common candidate genes. Lipids. 2017;52(12):969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sciarrillo CM, Koemel NA, Tomko PM, Bode KB, Emerson SR. Postprandial lipemic responses to various sources of saturated and monounsaturated fat in adults. Nutrients. 2019;11(5).

  60. Koutsari C, Zagana A, Tzoras I, Sidossis LS, Matalas AL. Gender influence on plasma triacylglycerol response to meals with different monounsaturated and saturated fatty acid content. Eur J Clin Nutr. 2004;58(3):495–502.

    Article  CAS  PubMed  Google Scholar 

  61. Mekki N, Charbonnier M, Borel P, Leonardi J, Juhel C, Portugal H, et al. Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr. 2002;132(12):3642–9.

    Article  CAS  PubMed  Google Scholar 

  62. Sun L, Goh HJ, Govindharajulu P, Leow MK, Henry CJ. Differential effects of monounsaturated and polyunsaturated fats on satiety and gut hormone responses in healthy subjects. Foods. 2019;8(12).

  63. Faghihnia N, Mangravite LM, Chiu S, Bergeron N, Krauss RM. Effects of dietary saturated fat on LDL subclasses and apolipoprotein CIII in men. Eur J Clin Nutr. 2012;66(11):1229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lapointe A, Balk EM, Lichtenstein AH. Gender differences in plasma lipid response to dietary fat. Nutr Rev. 2006;64(5 Pt 1):234–49.

    Article  PubMed  Google Scholar 

  65. Clifton PM, Nestel PJ. Influence of gender, body mass index, and age on response of plasma lipids to dietary fat plus cholesterol. Arterioscler Thromb. 1992;12(8):955–62.

    Article  CAS  PubMed  Google Scholar 

  66. Freedman DS, Otvos JD, Jeyarajah EJ, Shalaurova I, Cupples LA, Parise H, et al. Sex and age differences in lipoprotein subclasses measured by nuclear magnetic resonance spectroscopy: the Framingham Study. Clin Chem. 2004;50(7):1189–200.

    Article  CAS  PubMed  Google Scholar 

  67. Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland. Circulation. 1999;99(9):1165–72.

    Article  CAS  PubMed  Google Scholar 

  68. Peterson KA, Kaur G, Gianos E, Mookherjee S, Poli KA, Sidhu MS, et al. Challenges in optimizing lipid management in women. Cardiovasc Drugs Ther. 2021.

  69. Palmisano BT, Zhu L, Stafford JM. Role of estrogens in the regulation of liver lipid metabolism. Adv Exp Med Biol. 2017;1043:227–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carr MC, Hokanson JE, Zambon A, Deeb SS, Barrett PH, Purnell JQ, et al. The contribution of intraabdominal fat to gender differences in hepatic lipase activity and low/high density lipoprotein heterogeneity. J Clin Endocrinol Metab. 2001;86(6):2831–7.

    CAS  PubMed  Google Scholar 

  71. Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B. Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab. 2007;92(4):1311–8.

    Article  CAS  PubMed  Google Scholar 

  72. Knopp RH, Paramsothy P, Retzlaff BM, Fish B, Walden C, Dowdy A, et al. Gender differences in lipoprotein metabolism and dietary response: basis in hormonal differences and implications for cardiovascular disease. Curr Atheroscler Rep. 2005;7(6):472–9.

    Article  CAS  PubMed  Google Scholar 

  73. Schaefer EJ, Lamon-Fava S, Ausman LM, Ordovas JM, Clevidence BA, Judd JT, et al. Individual variability in lipoprotein cholesterol response to National Cholesterol Education Program Step 2 diets. Am J Clin Nutr. 1997;65(3):823–30.

    Article  CAS  PubMed  Google Scholar 

  74. Li Z, Otvos JD, Lamon-Fava S, Carrasco WV, Lichtenstein AH, McNamara JR, et al. Men and women differ in lipoprotein response to dietary saturated fat and cholesterol restriction. J Nutr. 2003;133(11):3428–33.

    Article  CAS  PubMed  Google Scholar 

  75. Katan MB. The response of lipoproteins to dietary fat and cholesterol in lean and obese persons. Curr Cardiol Rep. 2006;8(6):446–51.

    Article  PubMed  Google Scholar 

  76. Flock MR, Green MH, Kris-Etherton PM. Effects of adiposity on plasma lipid response to reductions in dietary saturated fatty acids and cholesterol. Adv Nutr. 2011;2(3):261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lefevre M, Champagne CM, Tulley RT, Rood JC, Most MM. Individual variability in cardiovascular disease risk factor responses to low-fat and low-saturated-fat diets in men: body mass index, adiposity, and insulin resistance predict changes in LDL cholesterol. Am J Clin Nutr. 2005;82(5):957–63 (quiz 1145-6).

    Article  CAS  PubMed  Google Scholar 

  78. Jackson KG, Poppitt SD, Minihane AM. Postprandial lipemia and cardiovascular disease risk: interrelationships between dietary, physiological and genetic determinants. Atherosclerosis. 2012;220(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  79. Alayón AN, Rivadeneira AP, Herrera C, Guzmán H, Arellano D, Echeverri I. Metabolic and inflammatory postprandial effect of a highly saturated fat meal and its relationship to abdominal obesity. Biomedica. 2018;38:93–100.

    PubMed  Google Scholar 

  80. Lozano A, Perez-Martinez P, Delgado-Lista J, Marin C, Cortes B, Rodriguez-Cantalejo F, et al. Body mass interacts with fat quality to determine the postprandial lipoprotein response in healthy young adults. Nutr Metab Cardiovasc Dis. 2012;22(4):355–61.

    Article  CAS  PubMed  Google Scholar 

  81. Sabaka P, Kruzliak P, Gaspar L, Caprnda M, Bendzala M, Balaz D, et al. Postprandial changes of lipoprotein profile: effect of abdominal obesity. Lipids Health Dis. 2013;12:179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hocking S, Samocha-Bonet D, Milner KL, Greenfield JR, Chisholm DJ. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev. 2013;34(4):463–500.

    Article  CAS  PubMed  Google Scholar 

  83. Egusa G, Beltz WF, Grundy SM, Howard BV. Influence of obesity on the metabolism of apolipoprotein B in humans. J Clin Invest. 1985;76(2):596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stahlberg D, Rudling M, Angelin B, Bjorkhem I, Forsell P, Nilsell K, et al. Hepatic cholesterol metabolism in human obesity. Hepatology. 1997;25(6):1447–50.

    Article  CAS  PubMed  Google Scholar 

  85. Larsen MA, Goll R, Lekahl S, Moen OS, Florholmen J. Delayed clearance of triglyceride-rich lipoproteins in young, healthy obese subjects. Clin Obes. 2015;5(6):349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5(4):1218–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuniga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoran Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Harding, S.V. & Rideout, T.C. Saturated Fat and Cardiovascular Health: Phenotype and Dietary Factors Influencing Interindividual Responsiveness. Curr Atheroscler Rep 24, 391–398 (2022). https://doi.org/10.1007/s11883-022-01014-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-022-01014-w

Keywords

Navigation