Skip to main content

Advertisement

Log in

How Do We Incorporate Polygenic Risk Scores in Cardiovascular Disease Risk Assessment and Management?

  • Evidence-Based Medicine, Clinical Trials and Their Interpretations (K. Nasir, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The potential of polygenic risk scores (PRS) to improve atherosclerotic cardiovascular disease (ASCVD) risk assessment and management has stoked significant interest in their incorporation into clinical management. The goal of this review is to apprise the readers of the latest developments and evidence of PRS readiness for clinical integration. We also discuss current limitations that must be addressed before PRS can be implemented into routine clinical practice.

Recent Findings

PRS have been shown to improve risk stratification for ASCVD and to identify patients who may derive increased benefit from primary and secondary prevention. Risk captured by PRS appears largely independent of traditional risk factors and can be ascertained at birth, prior to the development of traditional clinical risk factors. Genetic risk is modifiable through lifestyle modifications and medications.

Summary

PRS offers a valuable way to improve early identification of actionable CVD risk. However, further work is needed before PRS can be implemented clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 2018. 50:1219–24 This study identified individuals with polygenic risk for coronary artery disease that was equivalent to individuals with familial hypercholesterolemia.

  2. • Inouye M, Abraham G, Nelson CP, Wood AM, Sweeting MJ, Dudbridge F, et al. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J Am Coll Cardiol. 2018;72:1883–93 This study showed that a genome-wide polygenic risk score could characterize marked differences in lifetime trajectories of coronary artery disease risk between strata.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Damask A, Steg PG, Schwartz GG, Szarek M, Hagström E, Badimon L, et al. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES Trial. Circulation. 2020;141:624–36.

    Article  PubMed  Google Scholar 

  4. •• Aragam KG, Dobbyn A, Judy R, Chaffin M, Chaudhary K, Hindy G, et al. Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease. J Am Coll Cardiol. 2020;75:2769–80 Original research demonstrating the added clinical utility of a coronary artery disease polygenic risk score over traditional risk factors.

    Article  CAS  PubMed  Google Scholar 

  5. Khan SS, Cooper R, Greenland P. Do polygenic risk scores improve patient selection for prevention of coronary artery disease? JAMA. 2020;323:614–5.

    Article  PubMed  Google Scholar 

  6. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596.

    Article  PubMed  Google Scholar 

  7. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Vol. 383. The Lancet. 2014;383:999–1008.

    Article  Google Scholar 

  8. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham study. Am J Public Health Nations Health. 1957;47(4 pt 2):4–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muntner P, Colantonio LD, Cushman M, Goff DC, Howard G, Howard VJ, et al. Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations. JAMA. 2014;311:1406–15.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rana JS, Tabada GH, Solomon MD, Lo JC, Jaffe MG, Sung SH, et al. Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population. J Am Coll Cardiol. 2016;67:2118–30.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118:564–78.

    Article  CAS  PubMed  Google Scholar 

  12. Lloyd-Jones DM, Nam BH, D’Agostino RB, Levy D, Murabito JM, Wang TJ, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA. 2004;291:2204–11.

    Article  CAS  PubMed  Google Scholar 

  13. Sharifi M, Futema M, Nair D, Humphries SE. Genetic architecture of familial hypercholesterolaemia. Curr Cardiol Rep. 2017;19:44.

    Article  PubMed  PubMed Central  Google Scholar 

  14. • Musunuru K, Kathiresan S. Genetics of common, complex coronary artery disease. Cell. 2019;177:132–45 Review of the genetic architecture of coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  15. Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. Genet Epidemiol. 2008;32:227–34.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res. 2018;114:1241–57.

    CAS  PubMed  Google Scholar 

  17. Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  CAS  PubMed  Google Scholar 

  18. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358:1240–9.

    Article  CAS  PubMed  Google Scholar 

  19. Thanassoulis G, Peloso GM, Pencina MJ, Hoffmann U, Fox CS, Cupples LA, et al. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium the Framingham Heart Study. Circ Cardiovasc Genet. 2012;5:113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376:1393–400.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, Devlin JJ, et al. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J. 2016;37:561–7.

    Article  CAS  PubMed  Google Scholar 

  22. Privé F, Vilhjálmsson BJ, Aschard H, Blum MGB. Making the most of clumping and thresholding for polygenic scores. Am J Hum Genet. 2019;105:1213–21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abraham G, Havulinna AS, Bhalala OG, Byars SG, de Livera AM, Yetukuri L, et al. Genomic prediction of coronary heart disease. Eur Heart J. 2016;37:3267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Aragam KG, Natarajan P. Polygenic scores to assess atherosclerotic cardiovascular disease risk: clinical perspectives and basic implications. Circ Res. 2020;126:1159–77 Recent review of the genetic basis of atherosclerotic cardiovascular disease and the clinical utility of polygenic risk scores for coronary artery disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hindy G, Aragam K, Chaffin M, Orho-Melander M, Melander O, Khera AV, et al. Integration of a genome-wide polygenic score with ACC/ AHA pooled cohorts equation in prediction of coronary artery disease events in >285,000 participants [abstract]. Circulation. 2019;140:A16565.

    Google Scholar 

  26. • Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e1082–143 2018 US cholesterol guidelines.

    Google Scholar 

  27. Mosley JD, Gupta DK, Tan J, Yao J, Wells QS, Shaffer CM, et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA. 2020;323:627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Natarajan P. Polygenic risk scoring for coronary heart disease: the first risk factor. J Am Coll Cardiol. 2018;72(16):1894–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khera A. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, Devlin JJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marston NA, Kamanu FK, Nordio F, Gurmu Y, Roselli C, Sever PS, et al. Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score. Circulation. 2020;141:616–23.

    Article  PubMed  Google Scholar 

  32. Natarajan P, Young R, Stitziel NO, Padmanabhan S, Baber U, Mehran R, et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation. 2017;135:2091–101.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu P, Dharmayat KI, Stevens CAT, Sharabiani MTA, Jones RS, Watts GF, et al. Prevalence of familial hypercholesterolemia among the general population and patients with atherosclerotic cardiovascular disease. Circulation. 2020;141:1742–59.

    Article  PubMed  Google Scholar 

  34. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al. Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation. Int J Cardiol. 2014;171:309–25.

    Article  PubMed  Google Scholar 

  35. Sjouke B, Kusters DM, Kindt I, Besseling J, Defesche JC, Sijbrands EJG, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36:560–5.

    Article  PubMed  Google Scholar 

  36. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease. Eur Heart J. 2013;34:3478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. • Khera A. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation. 2019;139:1593–602 This article showed that of those with early myocardial infarction, high polygenic risk identified 10 times more individuals than did monogenic risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan WV, Pearson TA, Bennett GC, Cushman WC, Gaziano TA, Gorman PN, et al. ACC/AHA special report: clinical practice guideline implementation strategies: a summary of systematic reviews by the NHLBI Implementation Science Work Group: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2017;135:e122–37.

    Article  PubMed  Google Scholar 

  39. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet. 2019;28:R133–42.

    Article  CAS  PubMed  Google Scholar 

  41. Kullo IJ, Jouni H, Austin EE, Brown SA, Kruisselbrink TM, Isseh IN, et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial). Circulation. 2016;133:1181–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jouni H, Haddad RA, Marroush TS, Brown S-A, Kruisselbrink TM, Austin EE, et al. Shared decision-making following disclosure of coronary heart disease genetic risk: results from a randomized clinical trial. J Investig Med. 2017;65:681–8.

    Article  PubMed  Google Scholar 

  43. Knowles JW, Assimes TL, Kiernan M, Pavlovic A, Goldstein BA, Yank V, et al. Randomized trial of personal genomics for preventive cardiology. Circ Cardiovasc Genet. 2012;5:368–76.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Johnson HM, Einerson J, Korcarz CE, Aeschlimann SE, Stein JH. Long-term effects of carotid screening on patient outcomes and behaviors. Arch Intern Med. 2011;171:589–91.

    Article  PubMed  PubMed Central  Google Scholar 

  45. O’Malley PG, Feuerstein IM, Taylor AJ. Impact of electron beam tomography, with or without case management, on motivation, behavioral change, and cardiovascular risk profile: a randomized controlled trial. JAMA. 2003;289:2215–23.

    Article  PubMed  Google Scholar 

  46. McEvoy JW, Blaha MJ, Nasir K, Yoon YE, Choi EK, Cho IS, et al. Impact of coronary computed tomographic angiography results on patient and physician behavior in a low-risk population. Arch Intern Med. 2011;171:1260–8.

    Article  PubMed  Google Scholar 

  47. Akbarpour S, Khalili D, Zeraati H, Mansournia MA, Ramezankhani A, Fotouhi A. Healthy lifestyle behaviors and control of hypertension among adult hypertensive patients. Sci Rep. 2018;8:8508.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Newson JT, Huguet N, Ramage-Morin PL, McCarthy MJ, Bernie J, Kaplan MS, et al. Health behaviour changes after diagnosis of chronic illness among Canadians aged 50 or older. Health Rep. 2012;23:49–53.

    PubMed  Google Scholar 

  49. Masters R, Anwar E, Collins B, Cookson R, Capewell S. Return on investment of public health interventions: a systematic review. J Epidemiol Commun Health. 2017;71:827–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie M. Ballantyne.

Ethics declarations

Conflict of Interest

Trevor Hadley and Ali M. Agha have nothing to disclose. Christie M. Ballantyne has received grant/research support through his institution from Abbott Diagnostic, Akcea, Amgen, Esperion, Novartis, Regeneron, and Roche Diagnostic and is a consultant for Abbott Diagnostics, Akcea, Althera, Amarin, Amgen, Arrowhead, AstraZeneca, Corvidia, Denka Seiken, Esperion, Gilead, Janssen, Matinas BioPharma Inc, New Amsterdam, Novartis, Novo Nordisk, Pfizer, Regeneron, Roche Diagnostic and Sanofi-Synthelabo. He has received grant/research support through his institution from the National Institutes of Health, the American Heart Association, and the American Diabetes Association.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Evidence-Based Medicine, Clinical Trials and Their Interpretations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadley, T.D., Agha, A.M. & Ballantyne, C.M. How Do We Incorporate Polygenic Risk Scores in Cardiovascular Disease Risk Assessment and Management?. Curr Atheroscler Rep 23, 28 (2021). https://doi.org/10.1007/s11883-021-00915-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-021-00915-6

Keywords

Navigation