Skip to main content

Advertisement

Log in

The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis

  • Vascular Biology (H. Pownall, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Phospholipid transfer protein (PLTP), a member of lipid transfer protein family, is an important protein involved in lipid metabolism in the circulation. This article reviews recent PLTP research progresses, involving lipoprotein metabolism and atherogenesis.

Recent Findings

PLTP activity influences atherogenic and anti-atherogenic lipoprotein levels. Human serum PLTP activity is a risk factor for human cardiovascular disease and is an independent predictor of all-cause mortality. PLTP deficiency reduces VLDL and LDL levels and attenuates atherosclerosis in mouse models, while PLTP overexpression exerts an opposite effect. Both PLTP deficiency and overexpression result in reduction of HDL which has different size, inflammatory index, and lipid composition. Moreover, although both PLTP deficiency and overexpression reduce cholesterol efflux capacity, but this effect has no impact in macrophage reverse cholesterol transport in mice. Furthermore, PLTP activity is related with metabolic syndrome, thrombosis, and inflammation.

Summary

PLTP could be target for the treatment of dyslipidemia and atherosclerosis, although some potential off-target effects should be noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bruce C, Beamer LJ, Tall AR. The implications of the structure of the bactericidal/permeability-increasing protein on the lipid-transfer function of the cholesteryl ester transfer protein. Curr Opin Struct Biol. 1998;8:426–34.

    Article  CAS  PubMed  Google Scholar 

  2. Kleiger G, Beamer LJ, Grothe R, Mallick P, Eisenberg D. The 1.7 A crystal structure of BPI: a study of how two dissimilar amino acid sequences can adopt the same fold. J Mol Biol. 2000;299:1019–34.

    Article  CAS  PubMed  Google Scholar 

  3. Qiu X, Mistry A, Ammirati MJ, Chrunyk BA, Clark RW, Cong Y, et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nat Struct Mol Biol. 2007;14:106–13.

    Article  PubMed  CAS  Google Scholar 

  4. Eckert JK, Kim YJ, Kim JI, Gurtler K, Oh DY, Sur S, et al. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity. 2013;39:647–60.

    Article  CAS  PubMed  Google Scholar 

  5. Day JR, Albers JJ, Lofton-Day CE, Gilbert TL, Ching AF, Grant FJ, et al. Complete cDNA encoding human phospholipid transfer protein from human endothelial cells. J Biol Chem. 1994;269:9388–91.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang XC, Bruce C. Regulation of murine plasma phospholipid transfer protein activity and mRNA levels by lipopolysaccharide and high cholesterol diet. J Biol Chem. 1995;270:17133–8.

    Article  CAS  PubMed  Google Scholar 

  7. Massey JB, Hickson D, She HS, Sparrow JT, Via DP, Gotto AM Jr, et al. Measurement and prediction of the rates of spontaneous transfer of phospholipids between plasma lipoproteins. Biochim Biophys Acta. 1984;794:274–80.

    Article  CAS  PubMed  Google Scholar 

  8. Yu Y, Guo S, Feng Y, Feng L, Cui Y, Song G, et al. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability. Lipids. 2014;49:183–90.

    Article  PubMed  CAS  Google Scholar 

  9. Desrumaux CM, Mak PA, Boisvert WA, Masson D, Stupack D, Jauhiainen M, et al. Phospholipid transfer protein is present in human atherosclerotic lesions and is expressed by macrophages and foam cells. J Lipid Res. 2003;44:1453–61.

    Article  CAS  PubMed  Google Scholar 

  10. O’Brien KD, Vuletic S, McDonald TO, Wolfbauer G, Lewis K, Tu AY, et al. Cell-associated and extracellular phospholipid transfer protein in human coronary atherosclerosis. Circulation. 2003;108:270–4.

    Article  PubMed  CAS  Google Scholar 

  11. Oka T, Kujiraoka T, Ito M, Egashira T, Takahashi S, Nanjee MN, et al. Distribution of phospholipid transfer protein in human plasma: presence of two forms of phospholipid transfer protein, one catalytically active and the other inactive. J Lipid Res. 2000;41:1651–7.

    Article  CAS  PubMed  Google Scholar 

  12. Cheung MC, Albers JJ. Active plasma phospholipid transfer protein is associated with apoA-I- but not apoE-containing lipoproteins. J Lipid Res. 2006;47:1315–21.

    Article  CAS  PubMed  Google Scholar 

  13. Siggins S, Karkkainen M, Tenhunen J, Metso J, Tahvanainen E, Olkkonen VM, et al. Quantitation of the active and low-active forms of human plasma phospholipid transfer protein by ELISA. J Lipid Res. 2004;45:387–95.

    Article  CAS  PubMed  Google Scholar 

  14. Yazdanyar A, Jiang XC. Liver phospholipid transfer protein (PLTP) expression with a PLTP-null background promotes very low-density lipoprotein production in mice. Hepatology. 2012;56:576–84.

    Article  CAS  PubMed  Google Scholar 

  15. Vikstedt R, Ye D, Metso J, Hildebrand RB, Van Berkel TJ, Ehnholm C, et al. Macrophage phospholipid transfer protein contributes significantly to total plasma phospholipid transfer activity and its deficiency leads to diminished atherosclerotic lesion development. Arterioscler Thromb Vasc Biol. 2007;27:578–86.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang H, Yazdanyar A, Lou B, Chen Y, Zhao X, Li R, et al. Adipocyte phospholipid transfer protein and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2015;35:316–22.

    Article  CAS  PubMed  Google Scholar 

  17. Sponton CH, Hosono T, Taura J, Jedrychowski MP, Yoneshiro T, Wang Q, et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO Rep. 2020;21:e49828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang XC, D’Armiento J, Mallampalli RK, Mar J, Yan SF, Lin M. Expression of plasma phospholipid transfer protein mRNA in normal and emphysematous lungs and regulation by hypoxia. J Biol Chem. 1998;273:15714–8.

    Article  CAS  PubMed  Google Scholar 

  19. Garvin RA. Elevated phospholipid transfer protein in subjects with multiple sclerosis. J Lipids. 2015;2015:518654.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vuletic S, Kennedy H, Albers JJ, Killestein J, Vrenken H, Lutjohann D, et al. Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord. 2014;3:533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vuletic S, Jin LW, Marcovina SM, Peskind ER, Moller T, Albers JJ. Widespread distribution of PLTP in human CNS: evidence for PLTP synthesis by glia and neurons, and increased levels in Alzheimer’s disease. J Lipid Res. 2003;44:1113–23.

    Article  CAS  PubMed  Google Scholar 

  22. Vuletic S, Peskind ER, Marcovina SM, Quinn JF, Cheung MC, Kennedy H, et al. Reduced CSF PLTP activity in Alzheimer’s disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro. J Neurosci Res. 2005;80:406–13.

    Article  CAS  PubMed  Google Scholar 

  23. Desrumaux C, Pisoni A, Meunier J, Deckert V, Athias A, Perrier V, et al. Increased amyloid-beta peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology. 2013;38:817–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chirackal Manavalan AP, Kober A, Metso J, Lang I, Becker T, Hasslitzer K, et al. Phospholipid transfer protein is expressed in cerebrovascular endothelial cells and involved in high density lipoprotein biogenesis and remodeling at the blood-brain barrier. J Biol Chem. 2014;289:4683–98.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou T, He Q, Tong Y, Zhan R, Xu F, Fan D, et al. Phospholipid transfer protein (PLTP) deficiency impaired blood-brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun. 2014;445:352–6.

    Article  CAS  PubMed  Google Scholar 

  26. Tu AY, Albers JJ. Functional analysis of the transcriptional activity of the mouse phospholipid transfer protein gene. Biochem Biophys Res Commun. 2001;287:921–6.

    Article  CAS  PubMed  Google Scholar 

  27. Cao G, Beyer TP, Yang XP, Schmidt RJ, Zhang Y, Bensch WR, et al. Phospholipid transfer protein is regulated by liver X receptors in vivo. J Biol Chem. 2002;277:39561–5.

    Article  CAS  PubMed  Google Scholar 

  28. Laffitte BA, Joseph SB, Chen M, Castrillo A, Repa J, Wilpitz D, et al. The phospholipid transfer protein gene is a liver X receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol. 2003;23:2182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Urizar NL, Dowhan DH, Moore DD. The farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J Biol Chem. 2000;275:39313–7.

    Article  CAS  PubMed  Google Scholar 

  30. Riemens SC, van Tol A, Sluiter WJ, Dullaart RP. Plasma phospholipid transfer protein activity is lowered by 24-h insulin and acipimox administration: blunted response to insulin in type 2 diabetic patients. Diabetes. 1999;48:1631–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lalanne F, Motta C, Pafumi Y, Lairon D, Ponsin G. Modulation of the phospholipid transfer protein-mediated transfer of phospholipids by diacylglycerols. J Lipid Res. 2001;42:142–9.

    Article  CAS  PubMed  Google Scholar 

  32. Jin W, Wang X, Millar JS, Quertermous T, Rothblat GH, Glick JM, et al. Hepatic proprotein convertases modulate HDL metabolism. Cell Metab. 2007;6:129–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. • Yu Y, Lei X, Jiang H, Li Z, Creemers JWM, Zhang M, et al. Prodomain of furin promotes phospholipid transfer protein proteasomal degradation in hepatocytes. J Am Heart Assoc. 2018;7(9):e008526. This paper indicated that profurin-mediated PLTP hepatocyte intracellular degradation plays an important role in VLDL production.

  34. Guo LL, Chen YJ, Wang T, An J, Wang CN, Shen YC, et al. Ox-LDL-induced TGF-beta1 production in human alveolar epithelial cells: involvement of the Ras/ERK/PLTP pathway. J Cell Physiol. 2012;227:3185–91.

    Article  CAS  PubMed  Google Scholar 

  35. Chai XM, Li YL, Chen H, Guo SL, Shui LL, Chen YJ. Cigarette smoke extract alters the cell cycle via the phospholipid transfer protein/transforming growth factor-beta1/CyclinD1/CDK4 pathway. Eur J Pharmacol. 2016;786:85–93.

    Article  CAS  PubMed  Google Scholar 

  36. Schlitt A, Bickel C, Thumma P, Blankenberg S, Rupprecht HJ, Meyer J, et al. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:1857–62.

    Article  CAS  PubMed  Google Scholar 

  37. de Vries R, Dallinga-Thie GM, Smit AJ, Wolffenbuttel BH, van Tol A, Dullaart RP. Elevated plasma phospholipid transfer protein activity is a determinant of carotid intima-media thickness in type 2 diabetes mellitus. Diabetologia. 2006;49:398–404.

    Article  PubMed  CAS  Google Scholar 

  38. Dullaart RP, van Tol A, Dallinga-Thie GM. Phospholipid transfer protein, an emerging cardiometabolic risk marker: is it time to intervene? Atherosclerosis. 2013;228:38–41.

    Article  CAS  PubMed  Google Scholar 

  39. Colhoun HM, Scheek LM, Rubens MB, Van Gent T, Underwood SR, Fuller JH, et al. Lipid transfer protein activities in type 1 diabetic patients without renal failure and nondiabetic control subjects and their association with coronary artery calcification. Diabetes. 2001;50:652–9.

    Article  CAS  PubMed  Google Scholar 

  40. Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M, et al. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J Lipid Res. 2009;50:723–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, Brown MJ, et al. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation. 2010;122:470–7.

    Article  CAS  PubMed  Google Scholar 

  42. Robins SJ, Lyass A, Brocia RW, Massaro JM, Vasan RS. Plasma lipid transfer proteins and cardiovascular disease. The Framingham Heart Study Atherosclerosis. 2013;228:230–6.

    CAS  PubMed  Google Scholar 

  43. Cavusoglu E, Marmur JD, Chhabra S, Chopra V, Eng C, Jiang XC. Relation of baseline plasma phospholipid transfer protein (PLTP) activity to left ventricular systolic dysfunction in patients referred for coronary angiography. Atherosclerosis. 2009;207:261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen X, Sun A, Zou Y, Ge J, Kamran H, Jiang XC, et al. High PLTP activity is associated with depressed left ventricular systolic function. Atherosclerosis. 2013;228:438–42.

    Article  CAS  PubMed  Google Scholar 

  45. Cavusoglu E, Marmur JD, Chhabra S, Hojjati MR, Yanamadala S, Chopra V, et al. Elevated baseline plasma phospholipid protein (PLTP) levels are an independent predictor of long-term all-cause mortality in patients with diabetes mellitus and known or suspected coronary artery disease. Atherosclerosis. 2015;239:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yatsuya H, Tamakoshi K, Hattori H, Otsuka R, Wada K, Zhang H, et al. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ J. 2004;68:11–6.

    Article  CAS  PubMed  Google Scholar 

  47. Huuskonen J, Ekstrom M, Tahvanainen E, Vainio A, Metso J, Pussinen P, et al. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis. 2000;151:451–61.

    Article  CAS  PubMed  Google Scholar 

  48. Dullaart RP, De Vries R, Scheek L, Borggreve SE, Van Gent T, Dallinga-Thie GM, et al. Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations. Scand J Clin Lab Invest. 2004;64:205–15.

    Article  CAS  PubMed  Google Scholar 

  49. Ruhling K, Lang A, Richard F, Van Tol A, Eisele B, Herzberg V, et al. Net mass transfer of plasma cholesteryl esters and lipid transfer proteins in normolipidemic patients with peripheral vascular disease. Metabolism. 1999;48:1361–6.

    Article  CAS  PubMed  Google Scholar 

  50. Schgoer W, Mueller T, Jauhiainen M, Wehinger A, Gander R, Tancevski I, et al. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis. 2008;196:219–26.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang XC, Qin S, Qiao C, Kawano K, Lin M, Skold A, et al. Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency. Nat Med. 2001;7:847–52.

    Article  CAS  PubMed  Google Scholar 

  52. Yang XP, Yan D, Qiao C, Liu RJ, Chen JG, Li J, et al. Increased atherosclerotic lesions in apoE mice with plasma phospholipid transfer protein overexpression. Arterioscler Thromb Vasc Biol. 2003;23:1601–7.

    Article  CAS  PubMed  Google Scholar 

  53. van Haperen R, van Tol A, van Gent T, Scheek L, Visser P, van der Kamp A, et al. Increased risk of atherosclerosis by elevated plasma levels of phospholipid transfer protein. J Biol Chem. 2002;277:48938–43.

    Article  PubMed  Google Scholar 

  54. van Haperen R, van Gent T, van Tol A, de Crom R. Elevated expression of PLTP is atherogenic in apolipoprotein E deficient mice. Atherosclerosis. 2013;227:37–42.

    Article  PubMed  CAS  Google Scholar 

  55. Desrumaux C, Deckert V, Lemaire-Ewing S, Mossiat C, Athias A, Vandroux D, et al. Plasma phospholipid transfer protein deficiency in mice is associated with a reduced thrombotic response to acute intravascular oxidative stress. Arterioscler Thromb Vasc Biol. 2010;30:2452–7.

    Article  CAS  PubMed  Google Scholar 

  56. Deckert V, Kretz B, Habbout A, Raghay K, Labbe J, Abello N, et al. Development of abdominal aortic aneurysm is decreased in mice with plasma phospholipid transfer protein deficiency. Am J Pathol. 2013;183:975–86.

    Article  CAS  PubMed  Google Scholar 

  57. Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, et al. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol. 2011;31:766–74.

    Article  CAS  PubMed  Google Scholar 

  58. Van Eck M, Twisk J, Hoekstra M, Van Rij BT, Van der Lans CA, Bos IS, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278:23699–705.

    Article  PubMed  CAS  Google Scholar 

  59. Hoekstra M, van der Sluis RJ, Hildebrand RB, Lammers B, Zhao Y, Pratico D, et al. Disruption of phospholipid transfer protein-mediated high-density lipoprotein maturation reduces scavenger receptor BI deficiency-driven atherosclerosis susceptibility despite unexpected metabolic complications. Arterioscler Thromb Vasc Biol. 2020;40:611–23.

    Article  CAS  PubMed  Google Scholar 

  60. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lie J, de Crom R, van Gent T, van Haperen R, Scheek L, Lankhuizen I, et al. Elevation of plasma phospholipid transfer protein in transgenic mice increases VLDL secretion. J Lipid Res. 2002;43:1875–80.

    Article  CAS  PubMed  Google Scholar 

  62. van Haperen R, Samyn H, van Gent T, Zonneveld AJ, Moerland M, Grosveld F, et al. Novel roles of hepatic lipase and phospholipid transfer protein in VLDL as well as HDL metabolism. Biochim Biophys Acta. 1791;2009:1031–6.

    Google Scholar 

  63. Okazaki H, Goldstein JL, Brown MS, Liang G. LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem. 2010;285:6801–10.

    Article  CAS  PubMed  Google Scholar 

  64. Manchekar M, Liu Y, Sun Z, Richardson PE, Dashti N. Phospholipid transfer protein plays a major role in the initiation of apolipoprotein B-containing lipoprotein assembly in mouse primary hepatocytes. J Biol Chem. 2015;290:8196–205.

  65. Yazdanyar A, Quan W, Jin W, Jiang XC. Liver-specific phospholipid transfer protein deficiency reduces high-density lipoprotein and non-high-density lipoprotein production in mice. Arterioscler Thromb Vasc Biol. 2013;33:2058–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Masson D, Deckert V, Gautier T, Klein A, Desrumaux C, Viglietta C, et al. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein. Arterioscler Thromb Vasc Biol. 2011;31:766–74

  67. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356:148–56.

    Article  CAS  PubMed  Google Scholar 

  68. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest. 2006;116:3090–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jiang XC, Bruce C, Mar J, Lin M, Ji Y, Francone OL, et al. Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J Clin Invest. 1999;103:907–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qin S, Kawano K, Bruce C, Lin M, Bisgaier C, Tall AR, et al. Phospholipid transfer protein gene knock-out mice have low high density lipoprotein levels, due to hypercatabolism, and accumulate apoA-IV-rich lamellar lipoproteins. J Lipid Res. 2000;41:269–76.

    Article  CAS  PubMed  Google Scholar 

  71. Yan D, Navab M, Bruce C, Fogelman AM, Jiang XC. PLTP deficiency improves the anti-inflammatory properties of HDL and reduces the ability of LDL to induce monocyte chemotactic activity. J Lipid Res. 2004;45:1852–8.

    Article  CAS  PubMed  Google Scholar 

  72. Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30:139–43.

    Article  CAS  PubMed  Google Scholar 

  73. Oram JF, Wolfbauer G, Vaughan AM, Tang C, Albers JJ. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J Biol Chem. 2003;278:52379–85.

    Article  CAS  PubMed  Google Scholar 

  74. Jauhiainen M, Metso J, Pahlman R, Blomqvist S, van Tol A, Ehnholm C. Human plasma phospholipid transfer protein causes high density lipoprotein conversion. J Biol Chem. 1993;268:4032–6.

    Article  CAS  PubMed  Google Scholar 

  75. Huuskonen J, Olkkonen VM, Ehnholm C, Metso J, Julkunen I, Jauhiainen M. Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion. Biochemistry. 2000;39:16092–8.

    Article  CAS  PubMed  Google Scholar 

  76. Rye KA, Jauhiainen M, Barter PJ, Ehnholm C. Triglyceride-enrichment of high density lipoproteins enhances their remodelling by phospholipid transfer protein. J Lipid Res. 1998;39:613–22.

    Article  CAS  PubMed  Google Scholar 

  77. Tall AR, Hogan V, Askinazi L, Small DM. Interaction of plasma high density lipoproteins with dimyristoyllecithin multilamellar liposomes. Biochemistry. 1978;17:322–6.

    Article  CAS  PubMed  Google Scholar 

  78. Tall AR, Krumholz S, Olivecrona T, Deckelbaum RJ. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985;26:842–51.

    Article  CAS  PubMed  Google Scholar 

  79. Foger B, Santamarina-Fojo S, Shamburek RD, Parrot CL, Talley GD, Brewer HB Jr. Plasma phospholipid transfer protein. Adenovirus-mediated overexpression in mice leads to decreased plasma high density lipoprotein (HDL) and enhanced hepatic uptake of phospholipids and cholesteryl esters from HDL. J Biol Chem. 1997;272:27393–400.

    CAS  PubMed  Google Scholar 

  80. van Haperen R, van Tol A, Vermeulen P, Jauhiainen M, van Gent T, van den Berg P, et al. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice. Arterioscler Thromb Vasc Biol. 2000;20:1082–8.

    Article  PubMed  Google Scholar 

  81. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.

    Article  CAS  PubMed  Google Scholar 

  82. Kastelein JJ, van Leuven SI, Burgess L, Evans GW, Kuivenhoven JA, Barter PJ, et al. Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia. N Engl J Med. 2007;356:1620–30.

    Article  CAS  PubMed  Google Scholar 

  83. Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH, et al. Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet. 2007;370:153–60.

    Article  CAS  PubMed  Google Scholar 

  84. Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378:1547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barter PJ, Rye KA. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J Lipid Res. 2012;53:1755–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuwano T, Bi X, Cipollari E, Yasuda T, Lagor WR, Szapary HJ, et al. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport. J Lipid Res. 2017;58:731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sachinidis A, Kettenhofen R, Seewald S, Gouni-Berthold I, Schmitz U, Seul C, et al. Evidence that lipoproteins are carriers of bioactive factors. Arterioscler Thromb Vasc Biol. 1999;19:2412–21.

    Article  CAS  PubMed  Google Scholar 

  89. Kimura T, Sato K, Kuwabara A, Tomura H, Ishiwara M, Kobayashi I, et al. Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem. 2001;276:31780–5.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang B, Tomura H, Kuwabara A, Kimura T, Miura S, Noda K, et al. Correlation of high density lipoprotein (HDL)-associated sphingosine 1-phosphate with serum levels of HDL-cholesterol and apolipoproteins. Atherosclerosis. 2005;178:199–205.

    Article  CAS  PubMed  Google Scholar 

  91. Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60.

    Article  CAS  PubMed  Google Scholar 

  92. Levkau B. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications. Front Pharmacol. 2015;6:243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A. 2011;108:9613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bosteen MH, Madsen Svarrer EM, Bisgaard LS, Martinussen T, Madsen M, Nielsen LB, et al. Effects of apolipoprotein M in uremic atherosclerosis. Atherosclerosis. 2017;265:93–101.

    Article  CAS  PubMed  Google Scholar 

  95. Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, et al. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J Lipid Res. 2019;60:1912–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Samson SL, Garber AJ. Metabolic syndrome. Endocrinol Metab Clin N Am. 2014;43:1–23.

    Article  Google Scholar 

  97. Dullaart RP, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A. Effect of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism. Eur J Clin Investig. 1994;24:188–94.

    Article  CAS  Google Scholar 

  98. Murdoch SJ, Carr MC, Hokanson JE, Brunzell JD, Albers JJ. PLTP activity in premenopausal women. Relationship with lipoprotein lipase, HDL, LDL, body fat, and insulin resistance. J Lipid Res. 2000;41:237–44.

    Article  CAS  PubMed  Google Scholar 

  99. Kaser S, Sandhofer A, Foger B, Ebenbichler CF, Igelseder B, Malaimare L, et al. Influence of obesity and insulin sensitivity on phospholipid transfer protein activity. Diabetologia. 2001;44:1111–7.

    Article  CAS  PubMed  Google Scholar 

  100. Silver DL, Jiang XC, Tall AR. Increased high density lipoprotein (HDL), defective hepatic catabolism of ApoA-I and ApoA-II, and decreased ApoA-I mRNA in ob/ob mice. Possible role of leptin in stimulation of HDL turnover. J Biol Chem. 1999;274:4140–6.

    Article  CAS  PubMed  Google Scholar 

  101. Jiang XC, Li Z, Liu R, Yang XP, Pan M, Lagrost L, et al. Phospholipid transfer protein deficiency impairs apolipoprotein-B secretion from hepatocytes by stimulating a proteolytic pathway through a relative deficiency of vitamin E and an increase in intracellular oxidants. J Biol Chem. 2005;280:18336–40.

    Article  CAS  PubMed  Google Scholar 

  102. Song G, Zong C, Shao M, Yu Y, Liu Q, Wang H, et al. Phospholipid transfer protein (PLTP) deficiency attenuates high fat diet induced obesity and insulin resistance. Biochim Biophys Acta Mol Cell Biol Lipids. 1864;2019:1305–13.

    Google Scholar 

  103. Sponton CH, Hosono T, Taura J, Jedrychowski MP, Yoneshiro T, Wang Q, et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT-liver communication. EMBO Rep. 2020;21:e49828.

  104. Klein A, Deckert V, Schneider M, Dutrillaux F, Hammann A, Athias A, et al. Alpha-tocopherol modulates phosphatidylserine externalization in erythrocytes: relevance in phospholipid transfer protein-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:2160–7.

    Article  CAS  PubMed  Google Scholar 

  105. Oslakovic C, Krisinger MJ, Andersson A, Jauhiainen M, Ehnholm C, Dahlback B. Anionic phospholipids lose their procoagulant properties when incorporated into high density lipoproteins. J Biol Chem. 2009;284:5896–904.

    Article  CAS  PubMed  Google Scholar 

  106. Deguchi H, Wolfbauer G, Cheung MC, Banerjee Y, Elias DJ, Fernandez JA, et al. Inhibition of thrombin generation in human plasma by phospholipid transfer protein. Thromb J. 2015;13:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. •• Zhao XM, Wang Y, Yu Y, Jiang H, Babinska A, Chen XY, et al. Plasma phospholipid transfer protein promotes platelet aggregation. Thromb Haemost. 2018;118:2086–97 This paper showed that PLTP can promote platelet aggregation and PLTP is a factor mediating hypercoagulation.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Schlitt A, Liu J, Yan D, Mondragon-Escorpizo M, Norin AJ, Jiang XC. Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice. Biochim Biophys Acta. 1733;2005:187–91.

    Google Scholar 

  109. Shelly L, Royer L, Sand T, Jensen H, Luo Y. Phospholipid transfer protein deficiency ameliorates diet-induced hypercholesterolemia and inflammation in mice. J Lipid Res. 2008;49:773–81.

    Article  CAS  PubMed  Google Scholar 

  110. Desrumaux C, Lemaire-Ewing S, Ogier N, Yessoufou A, Hammann A, Sequeira-Le Grand A, et al. Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization. Cell Mol Immunol. 2016;13:795–804.

    Article  CAS  PubMed  Google Scholar 

  111. Gautier T, Klein A, Deckert V, Desrumaux C, Ogier N, Sberna AL, et al. Effect of plasma phospholipid transfer protein deficiency on lethal endotoxemia in mice. J Biol Chem. 2008;283:18702–10.

    Article  CAS  PubMed  Google Scholar 

  112. Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, et al. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J. 2014;28:2318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFkappaB in differentiated THP1 cells and human monocyte-derived macrophages. Biochim Biophys Acta. 1813;2011:1917–24.

    Google Scholar 

  114. Yu Y, Cui Y, Zhao Y, Liu S, Song G, Jiao P, et al. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation. Sci Rep. 2016;6:20845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem. 2008;283:11541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Department of Veterans Affairs and by National Institutes of Health grant R56HL121409, RO1, HL139582 and RO1, HL149730, the National Natural Science Foundation of China (81970385), Natural Science Foundation of Shandong (ZR2019MH021), and visiting scholarship fund of State Scholarship Council (No. 201908370082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Cheng Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article is a review article in the field of phospholipid transfer protein. It contains previous publications based on human and animal studies.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XC., Yu, Y. The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis. Curr Atheroscler Rep 23, 9 (2021). https://doi.org/10.1007/s11883-021-00907-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-021-00907-6

Keywords

Navigation