Skip to main content

Advertisement

Log in

Novel Functions of Endothelial Scavenger Receptor Class B Type I

  • Vascular Biology (H. Pownall, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Scavenger receptor class B type I (SR-BI) serves a key role in the reverse cholesterol transport in the liver as the high-affinity receptor for HDL. SR-BI is abundantly expressed in endothelium, and earlier works indicate that the receptor mediates anti-atherogenic actions of HDL. However, more recent studies uncovered novel functions of endothelial SR-BI as a lipoprotein transporter, which regulates transcellular transport process of both LDL and HDL. This brief review focuses on the unique functions of endothelial SR-BI and how they influence atherogenesis.

Recent Findings

Earlier studies indicate that SR-BI facilitates anti-atherogenic actions of HDL through modulation of intracellular signaling to stimulate endothelial nitric oxide synthase. In vivo studies in global SR-BI knockout mice also showed a strong atheroprotective role of the receptor; however, a contribution of endothelial SR-BI to atherosclerosis process in vivo has not been fully appreciated. Recent studies using cultured endothelial cells and in mice with endothelial-specific deletion of the receptor revealed previously unappreciated pro-atherogenic actions of SR-BI, which relates to its ability to deliver LDL into arteries. On the other hand, SR-BI has also been implicated in transport of HDL to the sub-intimal space as a part of reverse cholesterol transport.

Summary

SR-BI mediates internalization and transcellular transport of both HDL and LDL, and the cellular and molecular mechanism of the process has just begun to emerge. Harnessing these dual transport functions of the endothelial SR-BI may provide a novel, effective intervention to atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Acton SL, Scherer PE, Lodish HF, Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem. 1994;269(33):21003–9.

    Article  CAS  PubMed  Google Scholar 

  2. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996;271(5248):518–20.

    Article  CAS  PubMed  Google Scholar 

  3. Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest. 2001;108(6):793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mineo C. Lipoprotein receptor signaling in atherosclerosis. Cardiovasc Res 2019.

  5. Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res. 2002;90(3):270–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ. Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol. 2000;20(3):721–7.

    Article  CAS  PubMed  Google Scholar 

  7. Krieger M, Kozarsky K. Influence of the HDL receptor SR-BI on atherosclerosis. Curr Opin Lipidol. 1999;10(6):491–7.

    Article  CAS  PubMed  Google Scholar 

  8. Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A. 1997;94(23):12610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuller M, Dadoo O, Serkis V, Abutouk D, MacDonald M, Dhingani N, et al. The effects of diet on occlusive coronary artery atherosclerosis and myocardial infarction in scavenger receptor class B, type 1/low-density lipoprotein receptor double knockout mice. Arterioscler Thromb Vasc Biol. 2014;34(11):2394–403.

    Article  CAS  PubMed  Google Scholar 

  10. Huby T, Doucet C, Dachet C, Ouzilleau B, Ueda Y, Afzal V, et al. Knockdown expression and hepatic deficiency reveal an atheroprotective role for SR-BI in liver and peripheral tissues. J Clin Invest. 2006;116(10):2767–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tao H, Yancey PG, Babaev VR, Blakemore JL, Zhang Y, Ding L, et al. Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis. J Lipid Res. 2015;56(8):1449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Covey SD, Krieger M, Wang W, Penman M, Trigatti BL. Scavenger receptor class B type I-mediated protection against atherosclerosis in LDL receptor-negative mice involves its expression in bone marrow-derived cells. Arterioscler Thromb Vasc Biol. 2003;23(9):1589–94.

    Article  CAS  PubMed  Google Scholar 

  13. Pei Y, Chen X, Aboutouk D, Fuller MT, Dadoo O, Yu P, et al. SR-BI in bone marrow derived cells protects mice from diet induced coronary artery atherosclerosis and myocardial infarction. PLoS One. 2013;8(8):e72492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. •• Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling-Kelly E, Bergaya S, et al. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature. 2019;569(7757):565–9 The first in vivo evidence that endothelial SR-BI plays an atherogenic role through its ability to transport LDL across endothelium via DOCK4 and Rac1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Yancey PG, Su YR, Babaev VR, Zhang Y, Fazio S, et al. Inactivation of macrophage scavenger receptor class B type I promotes atherosclerotic lesion development in apolipoprotein E-deficient mice. Circulation. 2003;108(18):2258–63.

    Article  CAS  PubMed  Google Scholar 

  16. Van EM, Bos IS, Hildebrand RB, Van Rij BT, van Berkel TJ. Dual role for scavenger receptor class B, type I on bone marrow-derived cells in atherosclerotic lesion development. Am J Pathol. 2004;165(3):785–94.

    Article  Google Scholar 

  17. Mineo C, Shaul PW. Functions of scavenger receptor class B, type I in atherosclerosis. Curr Opin Lipidol. 2012;23(5):487–93.

    Article  CAS  PubMed  Google Scholar 

  18. Mineo C, Shaul PW. Novel biological functions of high-density lipoprotein cholesterol. Circ Res. 2012;111(8):1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mineo C, Shaul PW. Regulation of signal transduction by HDL. J Lipid Res. 2013;54(9):2315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. •• Zhang X, Sessa WC, Fernandez-Hernando C. Endothelial transcytosis of lipoproteins in atherosclerosis. Front Cardiovasc Med. 2018;5:130 A comprehensive review on lipoprotein transport in endothelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Armstrong SM, Sugiyama MG, Fung KY, Gao Y, Wang C, Levy AS, et al. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res. 2015;108(2):268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis. 2018;275:273–95.

    Article  CAS  PubMed  Google Scholar 

  23. Nordestgaard BG. The vascular endothelial barrier--selective retention of lipoproteins. Curr Opin Lipidol. 1996;7(5):269–73.

    Article  CAS  PubMed  Google Scholar 

  24. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104(4):503–16.

    Article  CAS  PubMed  Google Scholar 

  25. Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The role of lipids and lipoproteins in atherosclerosis. Endotext 2019.

  26. Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: challenges and opportunities. Traffic. 2018;19(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  27. Rahimi N. Defenders and challengers of endothelial barrier function. Front Immunol. 2017;8:1847.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86(1):279–367.

    Article  CAS  PubMed  Google Scholar 

  29. Tabas I, Garcia-Cardena G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol. 1983;96(6):1677–89.

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez-Hernando C, Yu J, Suarez Y, Rahner C, Davalos A, Lasuncion MA, et al. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab. 2009;10(1):48–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernandez-Hernando C, Yu J, Davalos A, Prendergast J, Sessa WC. Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol. 2010;177(2):998–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet. 2014;384(9943):618–25.

    Article  CAS  PubMed  Google Scholar 

  34. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371(25):2383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Krieger M. Charting the fate of the “good cholesterol”: identification and characterization of the high-density lipoprotein receptor SR-BI. Annu Rev Biochem. 1999;68:523–58.

    Article  CAS  PubMed  Google Scholar 

  36. Linton MRF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, et al. The role of lipids and lipoproteins in atherosclerosis. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al., editors. Endotext. South Dartmouth (MA) 2000.

  37. Rohrer L, Ohnsorg PM, Lehner M, Landolt F, Rinninger F, von Eckardstein A. High-density lipoprotein transport through aortic endothelial cells involves scavenger receptor BI and ATP-binding cassette transporter G1. Circ Res. 2009;104(10):1142–50.

    Article  CAS  PubMed  Google Scholar 

  38. • Velagapudi S, Yalcinkaya M, Piemontese A, Meier R, Norrelykke SF, Perisa D, et al. VEGF-A regulates cellular localization of SR-BI as well as transendothelial transport of HDL but not LDL. Arterioscler Thromb Vasc Biol. 2017;37(5):794–803 The work discovered inhibitors of VEGF-R2 signaling suppress HDL transcytosis by modulating SR-BI cellular localization.

    Article  CAS  PubMed  Google Scholar 

  39. Glass C, Pittman RC, Weinstein DB, Steinberg D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc Natl Acad Sci U S A. 1983;80(17):5435–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knecht TP, Pittman RC. A plasma membrane pool of cholesteryl esters that may mediate the selective uptake of cholesteryl esters from high-density lipoproteins. Biochim Biophys Acta. 1989;1002(3):365–75.

    Article  CAS  PubMed  Google Scholar 

  41. Pittman RC, Knecht TP, Rosenbaum MS, Taylor CA Jr. A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesterol esters. J Biol Chem. 1987;262(6):2443–50.

    Article  CAS  PubMed  Google Scholar 

  42. Silver DL, Wang N, Xiao X, Tall AR. High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J Biol Chem. 2001;276(27):25287–93.

    Article  CAS  PubMed  Google Scholar 

  43. Rohrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta. 2013;1831(11):1626–33.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pagler TA, Rhode S, Neuhofer A, Laggner H, Strobl W, Hinterndorfer C, et al. SR-BI-mediated high density lipoprotein (HDL) endocytosis leads to HDL resecretion facilitating cholesterol efflux. J Biol Chem. 2006;281(16):11193–204.

    Article  CAS  PubMed  Google Scholar 

  45. Rhode S, Breuer A, Hesse J, Sonnleitner M, Pagler TA, Doringer M, et al. Visualization of the uptake of individual HDL particles in living cells via the scavenger receptor class B type I. Cell Biochem Biophys. 2004;41(3):343–56.

    Article  CAS  PubMed  Google Scholar 

  46. Sun B, Eckhardt ER, Shetty S, van der Westhuyzen DR, Webb NR. Quantitative analysis of SR-BI-dependent HDL retroendocytosis in hepatocytes and fibroblasts. J Lipid Res. 2006;47(8):1700–13.

    Article  CAS  PubMed  Google Scholar 

  47. Wustner D. Mathematical analysis of hepatic high density lipoprotein transport based on quantitative imaging data. J Biol Chem. 2005;280(8):6766–79.

    Article  PubMed  Google Scholar 

  48. Wustner D, Mondal M, Huang A, Maxfield FR. Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells. J Lipid Res. 2004;45(3):427–37.

    Article  PubMed  Google Scholar 

  49. Nordestgaard BG, Hjelms E, Stender S, Kjeldsen K. Different efflux pathways for high and low density lipoproteins from porcine aortic intima. Arteriosclerosis. 1990;10(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  50. Lim HY, Thiam CH, Yeo KP, Bisoendial R, Hii CS, McGrath KC, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013;17(5):671–84.

    Article  CAS  PubMed  Google Scholar 

  51. Martel C, Li W, Fulp B, Platt AM, Gautier EL, Westerterp M, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123(4):1571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. • Fung KY, Wang C, Nyegaard S, Heit B, Fairn GD, Lee WL. SR-BI mediated transcytosis of HDL in brain microvascular endothelial cells is independent of caveolin, clathrin, and PDZK1. Front Physiol. 2017;8:841 Following up the group’s earlier works, the study showed in brain microvascular endothelial cells that HDL transcytosis requires dynamin and SR-BI, but not clathrin or caveolin-1.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miao L, Okoro EU, Cao Z, Yang H, Motley-Johnson E, Guo Z. High-density lipoprotein-mediated transcellular cholesterol transport in mouse aortic endothelial cells. Biochem Biophys Res Commun. 2015;465(2):256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cooke CJ, Nanjee MN, Stepanova IP, Olszewski WL, Miller NE. Variations in lipid and apolipoprotein concentrations in human leg lymph: effects of posture and physical exercise. Atherosclerosis. 2004;173(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  55. Martel C, Randolph GJ. Atherosclerosis and transit of HDL through the lymphatic vasculature. Curr Atheroscler Rep. 2013;15(9):354.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fernandez-Hernando C. Lymphatic vessels clean up your arteries. J Clin Invest. 2013;123(4):1417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vaisman BL, Vishnyakova TG, Freeman LA, Amar MJ, Demosky SJ, Liu C, et al. Endothelial expression of scavenger receptor class B, type i protects against development of atherosclerosis in mice. Biomed Res Int. 2015;2015:607120.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Eklund L, Kangas J, Saharinen P. Angiopoietin-tie signalling in the cardiovascular and lymphatic systems. Clin Sci (Lond). 2017;131(1):87–103.

    Article  CAS  Google Scholar 

  59. • Ghaffari S, Naderi Nabi F, Sugiyama MG, Lee WL. Estrogen inhibits LDL (low-density lipoprotein) transcytosis by human coronary artery endothelial cells via GPER (G-protein-coupled estrogen receptor) and SR-BI (scavenger receptor class B type 1). Arterioscler Thromb Vasc Biol. 2018;38(10):2283–94 The work demonstrated for the first time that modification of SR-BI expression by a hormone, estrogen, influences LDL transcytosis in cultured endothelial cells.

    Article  CAS  PubMed  Google Scholar 

  60. Barton M, Prossnitz ER. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab. 2015;26(4):185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7:13516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol. 2014;93(10–12):466–77.

    Article  CAS  PubMed  Google Scholar 

  63. Yajnik V, Paulding C, Sordella R, McClatchey AI, Saito M, Wahrer DC, et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 2003;112(5):673–84.

    Article  CAS  PubMed  Google Scholar 

  64. Kawada K, Upadhyay G, Ferandon S, Janarthanan S, Hall M, Vilardaga JP, et al. Cell migration is regulated by platelet-derived growth factor receptor endocytosis. Mol Cell Biol. 2009;29(16):4508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol. 1986;102(4):1304–11.

    Article  CAS  PubMed  Google Scholar 

  66. Pavlides S, Gutierrez-Pajares JL, Danilo C, Lisanti MP, Frank PG. Atherosclerosis, caveolae and caveolin-1. Adv Exp Med Biol. 2012;729:127–44.

    Article  CAS  PubMed  Google Scholar 

  67. Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol. 2008;295(1):C242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  69. Mineo C, Shaul PW. Circulating cardiovascular disease risk factors and signaling in endothelial cell caveolae. Cardiovasc Res. 2006;70(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  70. Sun B, Boyanovsky BB, Connelly MA, Shridas P, van der Westhuyzen DR, Webb NR. Distinct mechanisms for OxLDL uptake and cellular trafficking by class B scavenger receptors CD36 and SR-BI. J Lipid Res. 2007;48(12):2560–70.

    Article  CAS  PubMed  Google Scholar 

  71. Pfeffer SR. Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell. 2017;28(6):712–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF, Peters J, et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature. 2013;504(7478):172–6.

    Article  CAS  PubMed  Google Scholar 

  73. Kiseleva RY, Glassman PM, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR. Targeting therapeutics to endothelium: are we there yet? Drug Deliv Transl Res. 2018;8(4):883–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, et al. Targeting drug delivery in the vascular system: focus on endothelium. Adv Drug Deliv Rev. 2020;157:96–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NG, Jansen H, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69(7):823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Howson JMM, Zhao W, Barnes DR, Ho WK, Young R, Paul DS, et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet. 2017;49(7):1113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovingh GK, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364(2):136–45.

    Article  CAS  PubMed  Google Scholar 

  79. Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science. 2016;351(6278):1166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lukowski SW, Patel J, Andersen SB, Sim SL, Wong HY, Tay J, et al. Single-cell transcriptional profiling of aortic endothelium identifies a hierarchy from endovascular progenitors to differentiated cells. Cell Rep. 2019;27(9):2748–58 e3.

    Article  CAS  PubMed  Google Scholar 

  81. Kalluri AS, Vellarikkal SK, Edelman ER, Nguyen L, Subramanian A, Ellinor PT, et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation. 2019;140(2):147–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Feng W, Chen L, Nguyen PK, Wu SM, Li G. Single cell analysis of endothelial cells identified organ-specific molecular signatures and heart-specific cell populations and molecular features. Front Cardiovasc Med. 2019;6:165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chieko Mineo.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Vascular Biology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Dai, Y. & Mineo, C. Novel Functions of Endothelial Scavenger Receptor Class B Type I. Curr Atheroscler Rep 23, 6 (2021). https://doi.org/10.1007/s11883-020-00903-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00903-2

Keywords

Navigation