Skip to main content
Log in

The Effects of Carbohydrate-Restricted Dietary Patterns and Physical Activity on Body Weight and Glycemic Control

  • Nutrition (K. Petersen, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Carbohydrate (CHO)-restricted dietary patterns (very-low-CHO < 25–50 g CHO/day; low CHO 50–130 g CHO/day) and physical activity are used for weight loss and type 2 diabetes (T2D) prevention and management. This review discusses evidence for effects of these lifestyle therapies on body weight and glycemic control.

Recent Findings

Evidence supports the view that CHO-restricted interventions may be more effective than high-CHO, low-fat (HCLF) interventions in the short term for weight loss and glycemic control, but both produced similar levels of weight loss and glycemic control by 12 months. CHO-restricted dietary patterns resulted in a decreased use of diabetes medications. Benefits of CHO restriction were achieved at intakes that did not induce ketosis. Physical activity increases insulin sensitivity and reduces pancreatic beta-cell load, enhancing the effect of weight loss to delay or prevent T2D.

Summary

A CHO-restricted dietary pattern may be a reasonable option for weight loss and T2D management for some individuals. Physical activity enhances weight management and cardiometabolic health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Kirkpatrick CF, Bolick JP, Kris-Etherton PM, Sikand G, Aspry KE, Soffer DE, et al. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: a scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J Clin Lipidol. 2019;13(5):689–711.e1. https://doi.org/10.1016/j.jacl.2019.08.003This scientific statement presents the most recent evidence on low and very-low carbohydrate diets and their effects on cardiometabolic risk.

    Article  PubMed  Google Scholar 

  2. Seid H, Rosenbaum M. Low carbohydrate and low-fat diets: what we don't know and why we should know it. Nutrients. 2019;11(11):E2749. https://doi.org/10.3390/nu11112749.

    Article  CAS  PubMed  Google Scholar 

  3. • Evert AB, Dennison M, Gardner CD, Garvey WT, KHK L, MacLeod J, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019;42:731–54. https://doi.org/10.2337/dci19-0014This is an excellent review article discussing the beneficial effects of nutrition in the treatment of diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hallberg SJ, Gershuni VM, Hazbun TL, Athinarayanan SJ. Reversing type 2 diabetes: a narrative review of the evidence. Nutrients. 2019;11(4):E766. https://doi.org/10.3390/nu11040766.

    Article  CAS  PubMed  Google Scholar 

  5. Bueno NB, de Melo IS, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. 2013;110(7):1178–87. https://doi.org/10.1017/S0007114513000548.

    Article  CAS  PubMed  Google Scholar 

  6. Naude CE, Schoonees A, Senekal M, Young T, Garner P, Volmink J. Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: a systematic review and meta-analysis. PLoS One. 2014;9(7):e100652. https://doi.org/10.1371/journal.pone.0100652 Erratum in: PLoS One. 2018;13(7):e0200284. doi: 10.1371/journal.pone.0200284.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sainsbury E, Kizirian NV, Partridge SR, Gill T, Colagiuri S, Gibson AA. Effect of dietary carbohydrate restriction on glycemic control in adults with diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;139:239–52. https://doi.org/10.1016/j.diabres.2018.02.026.

    Article  CAS  PubMed  Google Scholar 

  8. Hashimoto Y, Fukuda T, Oyabu C, Tanaka M, Asano M, Yamazaki M, et al. Impact of low-carbohydrate diet on body composition: meta-analysis of randomized controlled studies. Obes Rev. 2016;17(6):499–509. https://doi.org/10.1111/obr.12405.

    Article  CAS  PubMed  Google Scholar 

  9. Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS Jr, et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176(Suppl 7):S44–54. https://doi.org/10.1093/aje/kws264.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schwingshackl L, Hoffmann G. Comparison of effects of long-term low-fat vs high-fat diets on blood lipid levels in overweight or obese patients: a systematic review and meta-analysis. J Acad Nutr Diet. 2013;113(12):1640–61. https://doi.org/10.1016/j.jand.2013.07.010.

    Article  PubMed  Google Scholar 

  11. Schwingshackl L, Hoffmann G. Comparison of the long-term effects of high-fat v. low-fat diet consumption on cardiometabolic risk factors in subjects with abnormal glucose metabolism: a systematic review and meta-analysis. Br J Nutr. 2014;111(12):2047–58. https://doi.org/10.1017/S0007114514000464.

    Article  CAS  PubMed  Google Scholar 

  12. Mansoor N, Vinknes KJ, Veierød MB, Retterstøl K. Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2016;115(3):466–79. https://doi.org/10.1017/S0007114515004699.

  13. Sackner-Bernstein J, Kanter D, Kaul S. Dietary intervention for overweight and obese adults: comparison of low-carbohydrate and low-fat diets. A meta-analysis. PLoS One. 2015;10(10):e0139817. https://doi.org/10.1371/journal.pone.0139817.

  14. • Huntriss R, Campbell M, Bedwell C. The interpretation and effect of a low-carbohydrate diet in the management of type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Eur J Clin Nutr. 2018;72(3):311–25. https://doi.org/10.1038/s41430-017-0019-4This meta-analysis was able to show a significant reduction in HbA1c when including only RCTs with a duration of ≥12 months.

    Article  CAS  PubMed  Google Scholar 

  15. Korsmo-Haugen HK, Brurberg KG, Mann J, Aas AM. Carbohydrate quantity in the dietary management of type 2 diabetes: a systematic review and meta-analysis. Diabetes Obes Metab. 2019;21(1):15–27. https://doi.org/10.1111/dom.13499.

    Article  CAS  PubMed  Google Scholar 

  16. McArdle PD, Greenfield SM, Rilstone SK, Narendran P, Haque MS, Gill PS. Carbohydrate restriction for glycaemic control in type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2019;36(3):335–48. https://doi.org/10.1111/dme.13862.

    Article  CAS  PubMed  Google Scholar 

  17. Meng Y, Bai H, Wang S, Li Z, Wang Q, Chen L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: a systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2017;131:124–31. https://doi.org/10.1016/j.diabres.2017.07.006.

    Article  CAS  PubMed  Google Scholar 

  18. Snorgaard O, Poulsen GM, Andersen HK, Astrup A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2017;5(1):e000354. https://doi.org/10.1136/bmjdrc-2016-000354.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • van Zuuren EJ, Fedorowicz Z, Kuijpers T, Pijl H. Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments. Am J Clin Nutr. 2018;108(2):300–31. https://doi.org/10.1093/ajcn/nqy096This meta-analysis showed the effects of CHO-restricted interventions compared to HCLF interventions stratified by time, which illustrates the short-term vs. the longer term effects on the dietary interventions.

    Article  PubMed  Google Scholar 

  20. Hall KD, Chen KY, Guo J, Lam YY, Leibel RL, Mayer LE, et al. Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men. Am J Clin Nutr. 2016;104:324–33. https://doi.org/10.3945/ajcn.116.133561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebbeling CB, Feldman HA, Klein GL, Wong JMW, Bielak L, Steltz SK, et al. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ. 2018;363:k4583. https://doi.org/10.1136/bmj.k4583.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hall KD, Guo J. Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology. 2017;152(7):1718–1727.e3. https://doi.org/10.1053/j.gastro.2017.01.052.

    Article  PubMed  Google Scholar 

  23. Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007;86(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  24. Gibson AA, Seimon RV, Lee CM, Ayre J, Franklin J, Markovic TP, et al. Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes Rev. 2015;16(1):64–76. https://doi.org/10.1111/obr.12230.

    Article  CAS  PubMed  Google Scholar 

  25. U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans. 2nd ed. Washington, DC: Department of Health and Human Services; 2018. Available at https://health.gov/PAGuidelines/

    Google Scholar 

  26. Institute of Medicine. Physical Activity. In: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press; 2005. p. 880–935. https://doi.org/10.17226/10490.

    Chapter  Google Scholar 

  27. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378(9793):826–37. https://doi.org/10.1016/S0140-6736(11)60812-X.

    Article  PubMed  Google Scholar 

  28. Kraus WE, Powell KE, Haskell WL, Janz KF, Campbell WW, Jakicic JM, et al. Physical activity, all-cause and cardiovascular mortality, and cardiovascular disease. Med Sci Sports Exerc. 2019;51(6):1270–81. https://doi.org/10.1249/MSS.0000000000001939.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheng W, Zhang Z, Cheng W, Yang C, Diao L, Liu W. Associations of leisure-time physical activity with cardiovascular mortality: a systematic review and meta-analysis of 44 prospective cohort studies. Eur J Prev Cardiol. 2018;25(17):1864–72. https://doi.org/10.1177/2047487318795194.

    Article  PubMed  Google Scholar 

  30. Pescatello LS, Buchner DM, Jakicic JM, Powell KE, Kraus WE, Bloodgood B, et al. Physical activity to prevent and treat hypertension: a systematic review. Med Sci Sports Exerc. 2019;51(6):1314–23. https://doi.org/10.1249/MSS.0000000000001943.

    Article  PubMed  Google Scholar 

  31. Wahid A, Manek N, Nichols M, Kelly P, Foster C, Webster P, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. J Am Heart Assoc. 2016;5(9):e002495. https://doi.org/10.1161/JAHA.115.002495.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30(7):529–42. https://doi.org/10.1007/s10654-015-0056-z.

    Article  PubMed  Google Scholar 

  33. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2017;2(1):e000143. https://doi.org/10.1136/bmjsem-2016-000143.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ramírez-Vélez R, Correa-Rodríguez M, Tordecilla-Sanders A, Aya-Aldana V, Izquierdo M, Correa-Bautista JE, et al. Exercise and postprandial lipemia: effects on vascular health in inactive adults. Lipids Health Dis. 2018;17(1):69. https://doi.org/10.1186/s12944-018-0719-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DeFronzo RA, Abdul-Ghani MA. Preservation of β-cell function: the key to diabetes prevention. J Clin Endocrinol Metab. 2011;96(8):2354–66. https://doi.org/10.1210/jc.2011-0246.

    Article  CAS  PubMed  Google Scholar 

  36. Koliaki C, Liatis S, le Roux CW, Kokkinos A. The role of bariatric surgery to treat diabetes: current challenges and perspectives. BMC Endocr Disord. 2017;17(1):50. https://doi.org/10.1186/s12902-017-0202-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palacios OM, Kramer M, Maki KC. Diet and prevention of type 2 diabetes mellitus: beyond weight loss and exercise. Expert Rev Endocrinol Metab. 2019;14(1):1–12. https://doi.org/10.1080/17446651.2019.1554430.

    Article  CAS  PubMed  Google Scholar 

  38. Bhupathiraju SN, Tobias DK, Malik VS, Pan A, Hruby A, Manson JE, et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 2014;100(1):218–32. https://doi.org/10.3945/ajcn.113.079533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greenwood DC, Threapleton DE, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, et al. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. Diabetes Care. 2013;36(12):4166–71. https://doi.org/10.2337/dc13-0325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Livesey G, Taylor R, Livesey H, Liu S. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;97(3):584–96. https://doi.org/10.3945/ajcn.112.041467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ojo O, Ojo OO, Adebowale F, Wang XH. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2018;10(3):373. https://doi.org/10.3390/nu10030373.

    Article  CAS  PubMed Central  Google Scholar 

  42. Vega-Lopez S, Venn BJ, Slavin JL. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients. 2018;10:E1361. https://doi.org/10.3390/nu10101361.

    Article  CAS  PubMed  Google Scholar 

  43. Ceriello A, Kilpatrick ES. Glycemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019;7(3):221–30. https://doi.org/10.1016/S2213-8587(18)30136-0.

    Article  PubMed  Google Scholar 

  44. Yu JH, Han K, Park S, Lee DY, Nam GE, Seo JA, et al. Effects of long-term glycemic variability on incident cardiovascular disease and mortality in subjects without diabetes: a nationwide population-based study. Medicine (Baltimore). 2019;98(29):e16317. https://doi.org/10.1097/MD.0000000000016317.

    Article  Google Scholar 

  45. Tay J, Thompson CH, Luscombe-Marsh ND, Wycherley TP, Noakes M, Buckley JD, et al. Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: a 2-year randomized clinical trial. Diabetes Obes Metab. 2018;20(4):858–71. https://doi.org/10.1111/dom.13164.

    Article  CAS  PubMed  Google Scholar 

  46. Gummesson A, Nyman E, Knutsson M, Karpefors M. Effect of weight reduction on glycated haemoglobin in weight loss trials in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19(9):1295–305. https://doi.org/10.1111/dom.12971.

    Article  CAS  PubMed  Google Scholar 

  47. • Shan Z, Guo Y, Hu FB, Liu L, Qi Q Association of low-carbohydrate and low-fat diets with mortality among US adults. JAMA Intern Med. 2020. doi: https://doi.org/10.1001/jamainternmed.2019.6980. This is an analysis of data from NHANES from 1999 to 2014 that examined the association between overall, unhealthy, and healthy low-carbohydrate diet and low-fat diet scores based on total and types of macronutrients with total and cause-specific mortality.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol F. Kirkpatrick.

Ethics declarations

Conflict of Interest

Carol F. Kirkpatrick and Cara Liday declare that they have no conflicts of interest. Kevin C. Maki is an employee of Midwest Biomedical Research, which has received research grant funding and/or consulting fees from the following organizations during the prior 36 months: Pharmavite, Kellogg, General Mills, Almond Board of California, Hass Avocado Board, American Egg Board, Beef Checkoff, National Dairy Council, Pharmanex, National Dairy Council, American Potato Research & Education, ACH Foods, Abbott Nutrition, Ingredion, and Kemin.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirkpatrick, C.F., Liday, C. & Maki, K.C. The Effects of Carbohydrate-Restricted Dietary Patterns and Physical Activity on Body Weight and Glycemic Control. Curr Atheroscler Rep 22, 20 (2020). https://doi.org/10.1007/s11883-020-00838-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-020-00838-8

Keywords

Navigation