Skip to main content

Advertisement

Log in

Role of Coronary Calcium Score to Identify Candidates for ASCVD Prevention

  • Global Coronary Heart Disease (S.Virani and S. Naderi, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we describe the mechanism behind coronary artery calcification formation and detection, as well as its implication in cardiovascular disease (CVD) risk stratification, intervention, and prognosis in asymptomatic individuals.

Recent Findings

Multiple cohort and population studies have shown that coronary artery calcium scoring is effective and reproducible in predicting the risk for cardiovascular disease. The updated 2018 ACC/AHA guideline has incorporated consideration of coronary artery calcification testing into cardiovascular disease risk stratification and therapy guidance.

Summary

Coronary artery calcification’s evidence-based role in detection, risk stratification, and ultimately its unique influence on therapeutic intervention and prognosis of cardiovascular disease in asymptomatic population is increasingly being recognized..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Allison MA, Hsi S, Wassel CL, et al. Calcified atherosclerosis in different vascular beds and the risk of mortality. Arterioscler Thromb Vasc Biol. 2012;32(1):140–6.

    CAS  PubMed  Google Scholar 

  2. Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Budoff MJ, Georgiou D, Brody A, et al. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation. 1996;93(5):898–904.

    CAS  PubMed  Google Scholar 

  4. Chen J, Budoff MJ, Reilly MP, et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017;2(6):635–43.

    PubMed  PubMed Central  Google Scholar 

  5. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham Score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210–5.

    CAS  PubMed  Google Scholar 

  6. Detrano R, Guerci AD, Carr JJ, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    CAS  PubMed  Google Scholar 

  7. Orimoloye OA, Budoff MJ, Dardari ZA, et al. Race/ethnicity and the prognostic implications of coronary artery calcium for all-cause and cardiovascular disease mortality: the Coronary Artery Calcium Consortium. J Am Heart Assoc. 2018;7(20):e010471.

    PubMed  PubMed Central  Google Scholar 

  8. Mitchell JD, Paisley R, Moon P, Novak E, Villines TC. Coronary artery calcium and long-term risk of death, myocardial infarction, and stroke: the Walter Reed Cohort Study. JACC Cardiovasc Imaging. 2018;11(12):1799–806.

    PubMed  Google Scholar 

  9. Hartaigh BO, Valenti V, Cho I, et al. 15-Year prognostic utility of coronary artery calcium scoring for all-cause mortality in the elderly. Atherosclerosis. 2016;246:361–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Paixao AR, Ayers CR, El Sabbagh A, et al. Coronary artery calcium improves risk classification in younger populations. JACC Cardiovasc Imaging. 2015;8(11):1285–93.

    PubMed  Google Scholar 

  11. Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2935–59.

    PubMed  Google Scholar 

  12. Authors/Task Force M, Piepoli MF, Hoes AW, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23(11):NP1–NP96.

    Google Scholar 

  13. Lanzer P, Boehm M, Sorribas V, et al. Medial vascular calcification revisited: review and perspectives. Eur Heart J. 2014;35(23):1515–25.

    PubMed  PubMed Central  Google Scholar 

  14. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    PubMed  Google Scholar 

  15. Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol. 2010;7(9):528–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kapustin AN, Shanahan CM. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc Med. 2012;22(5):133–7.

    CAS  PubMed  Google Scholar 

  17. Leopold JA. Vascular calcification: mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015;25(4):267–74.

    CAS  PubMed  Google Scholar 

  18. Thompson B, Towler DA. Arterial calcification and bone physiology: role of the bone-vascular axis. Nat Rev Endocrinol. 2012;8(9):529–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol. 2003;23(3):489–94.

    CAS  PubMed  Google Scholar 

  20. Boström K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993;91(4):1800–9.

    PubMed  PubMed Central  Google Scholar 

  21. Zebboudj AF, Shin V, Bostrom K. Matrix GLA protein and BMP-2 regulate osteoinduction in calcifying vascular cells. J Cell Biochem. 2003;90(4):756–65.

    CAS  PubMed  Google Scholar 

  22. Hao H, Hirota S, Ishibashi-Ueda H, Kushiro T, Kanmatsuse K, Yutani C. Expression of matrix Gla protein and osteonectin mRNA by human aortic smooth muscle cells. Cardiovasc Pathol. 2004;13(4):195–202.

    CAS  PubMed  Google Scholar 

  23. Reynolds JL, Skepper JN, McNair R, et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005;16(10):2920–30.

    CAS  PubMed  Google Scholar 

  24. Dhore CR, Cleutjens JP, Lutgens E, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2001;21(12):1998–2003.

    CAS  PubMed  Google Scholar 

  25. Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res. 2000;87(11):1055–62.

    CAS  PubMed  Google Scholar 

  26. Clarke MC, Littlewood TD, Figg N, et al. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res. 2008;102(12):1529–38.

    CAS  PubMed  Google Scholar 

  27. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG. Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation. 1998;97(23):2307–15.

    CAS  PubMed  Google Scholar 

  28. New SE, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res. 2013;113(1):72–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mody N, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med. 2001;31(4):509–19.

    CAS  PubMed  Google Scholar 

  30. Byon CH, Javed A, Dai Q, et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 2008;283(22):15319–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105(5):650–5.

    CAS  PubMed  Google Scholar 

  32. Proudfoot D, Davies JD, Skepper JN, Weissberg PL, Shanahan CM. Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation. 2002;106(24):3044–50.

    CAS  PubMed  Google Scholar 

  33. Parhami F, Morrow AD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol. 1997;17(4):680–7.

    CAS  PubMed  Google Scholar 

  34. Bear M, Butcher M, Shaughnessy SG. Oxidized low-density lipoprotein acts synergistically with beta-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells. J Cell Biochem. 2008;105(1):185–93.

    CAS  PubMed  Google Scholar 

  35. Stary HC, Blankenhorn DH, Chandler AB, et al. A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1992;85(1):391–405.

    CAS  PubMed  Google Scholar 

  36. Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994;89(5):2462–78.

    CAS  PubMed  Google Scholar 

  37. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1995;92(5):1355–74.

    CAS  PubMed  Google Scholar 

  38. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.

    CAS  PubMed  Google Scholar 

  39. Mori H, Torii S, Kutyna M, Sakamoto A, Finn AV, Virmani R. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018;11(1):127–42.

    PubMed  Google Scholar 

  40. Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol. 2014;34(4):724–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    CAS  PubMed  Google Scholar 

  42. Mao SS, Pal RS, McKay CR, et al. Comparison of coronary artery calcium scores between electron beam computed tomography and 64-multidetector computed tomographic scanner. J Comput Assist Tomogr. 2009;33(2):175–8.

    PubMed  Google Scholar 

  43. Shao L, Yan AT, Lebovic G, Wong HH, Kirpalani A, Deva DP. Prognostic value of visually detected coronary artery calcification on unenhanced non-gated thoracic computed tomography for prediction of non-fatal myocardial infarction and all-cause mortality. J Cardiovasc Comput Tomogr. 2017;11(3):196–202.

    PubMed  Google Scholar 

  44. Andrews J, Psaltis PJ, Bartolo BAD, Nicholls SJ, Puri R. Coronary arterial calcification: a review of mechanisms, promoters and imaging. Trends Cardiovasc Med. 2018;28(8):491–501.

    CAS  PubMed  Google Scholar 

  45. Blaha MJ, Budoff MJ, Tota-Maharaj R, et al. Improving the CAC score by addition of regional measures of calcium distribution: multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging. 2016;9(12):1407–16.

    PubMed  PubMed Central  Google Scholar 

  46. Tota-Maharaj R, Joshi PH, Budoff MJ, et al. Usefulness of regional distribution of coronary artery calcium to improve the prediction of all-cause mortality. Am J Cardiol. 2015;115(9):1229–34.

    CAS  PubMed  Google Scholar 

  47. Arnson Y, Rozanski A, Gransar H, et al. Comparison of the coronary artery calcium score and number of calcified coronary plaques for predicting patient mortality risk. Am J Cardiol. 2017;120(12):2154–9.

    PubMed  Google Scholar 

  48. Criqui MH, Knox JB, Denenberg JO, et al. Coronary artery calcium volume and density: potential interactions and overall predictive value: the Multi-Ethnic Study of Atherosclerosis. JACC Cardiovasc Imaging. 2017;10(8):845–54.

    PubMed  Google Scholar 

  49. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50(4):319–26.

    PubMed  Google Scholar 

  50. Blaha MJ, Martin SS. How do statins work?: changing paradigms with implications for statin allocation. J Am Coll Cardiol. 2013;62(25):2392–4.

    PubMed  Google Scholar 

  51. Inoue K, Motoyama S, Sarai M, et al. Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention. JACC Cardiovasc Imaging. 2010;3(7):691–8.

    PubMed  Google Scholar 

  52. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860–70.

    PubMed  Google Scholar 

  53. Shaw LJ, Giambrone AE, Blaha MJ, et al. Long-term prognosis after coronary artery calcification testing in asymptomatic patients: a cohort study. Ann Intern Med. 2015;163(1):14–21.

    PubMed  Google Scholar 

  54. Valenti V, O’Hartaigh B, Heo R, et al: A 15-year warranty period for asymptomatic individuals without coronary artery calcium: a prospective follow-up of 9,715 individuals. JACC Cardiovasc Imaging 2015, 8(8):900-909.

  55. Tota-Maharaj R, Blaha MJ, Blankstein R, et al. The relationship of coronary artery calcium to coronary heart disease events is similar in young and elderly participants in the multi-ethnic study of atherosclerosis: a secondary analysis of a prospective population-based cohort. Mayo Clin Proc. 2014;89(10):1350–9.

    CAS  PubMed  Google Scholar 

  56. Bavishi C, Argulian E, Chatterjee S, Rozanski A. CACS and the frequency of stress-induced myocardial ischemia during MPI: a meta-Analysis. JACC Cardiovasc Imaging. 2016;9(5):580–9.

    PubMed  Google Scholar 

  57. Tison GH, Guo M, Blaha MJ, et al. Multisite extracoronary calcification indicates increased risk of coronary heart disease and all-cause mortality: the Multi-Ethnic Study of Atherosclerosis. J Cardiovasc Comput Tomogr. 2015;9(5):406–14.

    PubMed  PubMed Central  Google Scholar 

  58. McClelland RL, Chung H, Detrano R, Post W, Kronmal RA. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2006;113(1):30–7.

    PubMed  Google Scholar 

  59. Blaha MJ, Cainzos-Achirica M, Greenland P, et al. Role of coronary artery calcium score of zero and other negative risk markers for cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. 2016;133(9):849–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yeboah J, McClelland RL, Polonsky TS, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Erbel R, Mohlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406.

    PubMed  Google Scholar 

  62. McClelland RL, Jorgensen NW, Budoff M, et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Elias-Smale SE, Proenca RV, Koller MT, et al. Coronary calcium score improves classification of coronary heart disease risk in the elderly: the Rotterdam study. J Am Coll Cardiol. 2010;56(17):1407–14.

    PubMed  Google Scholar 

  64. Loria CM, Liu K, Lewis CE, et al. Early adult risk factor levels and subsequent coronary artery calcification: the CARDIA Study. J Am Coll Cardiol. 2007;49(20):2013–20.

    PubMed  Google Scholar 

  65. Sung JH, Yeboah J, Lee JE, et al. Diagnostic value of coronary artery calcium score for cardiovascular disease in African Americans: the Jackson Heart Study. Br J Med Med Res. 2016:11(2).

    Google Scholar 

  66. Poornima IG, Mackey RH, Allison MA, et al. Coronary artery calcification (CAC) and post-trial cardiovascular events and mortality within the Women’s Health Initiative (WHI) Estrogen-Alone trial. J Am Heart Assoc. 2017;6(11).

  67. Newman AB, Naydeck BL, Ives DG, et al. Coronary artery calcium, carotid artery wall thickness, and cardiovascular disease outcomes in adults 70 to 99 years old. Am J Cardiol. 2008;101(2):186–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Folsom AR, Kronmal RA, Detrano RC, et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168(12):1333–9.

    PubMed  PubMed Central  Google Scholar 

  69. Elias-Smale SE, Wieberdink RG, Odink AE, et al. Burden of atherosclerosis improves the prediction of coronary heart disease but not cerebrovascular events: the Rotterdam Study. Eur Heart J. 2011;32(16):2050–8.

    PubMed  Google Scholar 

  70. Hermann DM, Gronewold J, Lehmann N, et al. Coronary artery calcification is an independent stroke predictor in the general population. Stroke. 2013;44(4):1008–13.

    CAS  PubMed  Google Scholar 

  71. Gibson AO, Blaha MJ, Arnan MK, et al. Coronary artery calcium and incident cerebrovascular events in an asymptomatic cohort. The MESA Study JACC Cardiovasc Imaging. 2014;7(11):1108–15.

    PubMed  Google Scholar 

  72. Kälsch H, Lehmann N, Mohlenkamp S, et al. Association of coronary artery calcium and congestive heart failure in the general population: results of the Heinz Nixdorf Recall study. Clin Res Cardiol. 2010;99(3):175–82.

    PubMed  Google Scholar 

  73. Sakuragi S, Ichikawa K, Yamada K, et al. An increase in the coronary calcification score is associated with an increased risk of heart failure in patients without a history of coronary artery disease. J Cardiol. 2016;67(4):358–64.

    PubMed  Google Scholar 

  74. Leening MJ, Elias-Smale SE, Kavousi M, et al. Coronary calcification and the risk of heart failure in the elderly: the Rotterdam Study. JACC Cardiovasc Imaging. 2012;5(9):874–80.

    PubMed  Google Scholar 

  75. Bakhshi H, Ambale-Venkatesh B, Yang X, et al. Progression of coronary artery calcium and incident heart failure: the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2017:6(4).

  76. Nasir K, Bittencourt MS, Blaha MJ, et al. Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association Cholesterol Management Guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2015;66(15):1657–68.

    CAS  PubMed  Google Scholar 

  77. Carr JJ, Jacobs DR Jr, Terry JG, et al. Association of coronary artery calcium in adults aged 32 to 46 years with incident coronary heart disease and death. JAMA Cardiol. 2017;2(4):391–9.

    PubMed  PubMed Central  Google Scholar 

  78. Han D. B OH, Lee JH, et al: Assessment of coronary artery calcium scoring for statin treatment strategy according to ACC/AHA guidelines in asymptomatic Korean adults. Yonsei Med J. 2017;58(1):82–9.

    PubMed  Google Scholar 

  79. Hong J, Blankstein R, Blaha M, et al. Cost-effectiveness of coronary artery calcium testing among statin candidates according to the American College of Cardiology and American Heart Association cholesterol guidelines. J Am Coll Cardiol. 2017;69(11 Supplement):1828.

    Google Scholar 

  80. Mahabadi AA, Mohlenkamp S, Lehmann N, et al. CAC Score improves coronary and CV risk assessment above statin indication by ESC and AHA/ACC primary prevention guidelines. JACC Cardiovasc Imaging. 2017;10(2):143–53.

    PubMed  Google Scholar 

  81. Mortensen MB, Fuster V, Muntendam P, et al. A simple disease-guided approach to personalize ACC/AHA-recommended statin allocation in elderly people: the BioImage Study. J Am Coll Cardiol. 2016;68(9):881–91.

    PubMed  Google Scholar 

  82. Pursnani A, Massaro JM, D’Agostino RB Sr, O’Donnell CJ, Hoffmann U. Guideline-based statin eligibility, coronary artery calcification, and cardiovascular events. JAMA. 2015;314(2):134–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yeboah J, Polonsky TS, Young R, et al. Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association cholesterol guidelines. Circulation. 2015;132(10):916–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Budoff MJ, McClelland RL, Nasir K, et al. Cardiovascular events with absent or minimal coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2009;158(4):554–61.

    PubMed  PubMed Central  Google Scholar 

  85. Blaha MJ, Budoff MJ, DeFilippis AP, et al. Associations between C-reactive protein, coronary artery calcium, and cardiovascular events: implications for the JUPITER population from MESA, a population-based cohort study. Lancet. 2011;378(9792):684–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. • Budoff MJ, Young R, Burke G, et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA). Eur Heart J. 2018;39(25):2401–8 Seminal study evaluating the role of coronary artery calcification in 10-year cardiovascular disease risk prediction across race, gender, and age.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. McEvoy JW, Blaha MJ, Rivera JJ, et al. Mortality rates in smokers and nonsmokers in the presence or absence of coronary artery calcification. JACC Cardiovasc Imaging. 2012;5(10):1037–45.

    PubMed  PubMed Central  Google Scholar 

  88. Cohen R, Budoff M, McClelland RL, et al. Significance of a positive family history for coronary heart disease in patients with a zero coronary artery calcium score (from the Multi-Ethnic Study of Atherosclerosis). Am J Cardiol. 2014;114(8):1210–4.

    PubMed  PubMed Central  Google Scholar 

  89. Metkus TS, Brown T, Budoff M, et al. HIV infection is associated with an increased prevalence of coronary noncalcified plaque among participants with a coronary artery calcium score of zero: Multicenter AIDS Cohort Study (MACS). HIV Med. 2015;16(10):635–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Grundy SM, Stone NJ, Bailey AL, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. Circulation. 2018;2018:CIR0000000000000625.

    Google Scholar 

  91. McEvoy JW, Martin SS, Dardari ZA, et al. Coronary artery calcium to guide a personalized risk-based approach to initiation and intensification of antihypertensive therapy. Circulation. 2017;135(2):153–65.

    CAS  PubMed  Google Scholar 

  92. Miedema MD, Duprez DA, Misialek JR, et al. Use of coronary artery calcium testing to guide aspirin utilization for primary prevention: estimates from the multi-ethnic study of atherosclerosis. Circ Cardiovasc Qual Outcomes. 2014;7(3):453–60.

    PubMed  PubMed Central  Google Scholar 

  93. Pletcher MJ, Pignone M, Earnshaw S, et al. Using the coronary artery calcium score to guide statin therapy: a cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes. 2014;7(2):276–84.

    PubMed  PubMed Central  Google Scholar 

  94. Roberts ET, Horne A, Martin SS, et al. Cost-effectiveness of coronary artery calcium testing for coronary heart and cardiovascular disease risk prediction to guide statin allocation: the Multi-Ethnic Study of Atherosclerosis (MESA). PLoS One. 2015;10(3):e0116377.

    PubMed  PubMed Central  Google Scholar 

  95. van Kempen BJ, Spronk S, Koller MT, et al. Comparative effectiveness and cost-effectiveness of computed tomography screening for coronary artery calcium in asymptomatic individuals. J Am Coll Cardiol. 2011;58(16):1690–701.

    PubMed  Google Scholar 

  96. van Kempen BJ, Ferket BS, Steyerberg EW, Max W, Myriam Hunink MG, Fleischmann KE. Comparing the cost-effectiveness of four novel risk markers for screening asymptomatic individuals to prevent cardiovascular disease (CVD) in the US population. Int J Cardiol. 2016;203:422–31.

    PubMed  Google Scholar 

  97. Galper BZ, Wang YC, Einstein AJ. Strategies for primary prevention of coronary heart disease based on risk stratification by the ACC/AHA lipid guidelines, ATP III guidelines, coronary calcium scoring, and C-reactive protein, and a global treat-all strategy: a comparative--effectiveness modeling study. PLoS One. 2015;10(9):e0138092.

    PubMed  PubMed Central  Google Scholar 

  98. • Hong JC, Blankstein R, Shaw LJ, et al. Implications of coronary artery calcium testing for treatment decisions among statin candidates according to the ACC/AHA cholesterol management guidelines: a cost-effectiveness analysis. JACC Cardiovasc Imaging. 2017;10(8):938–52 An important review on cost-effectiveness of coronary artery calcification and its role in statin therapy.

    PubMed  Google Scholar 

  99. Salami JA, Warraich H, Valero-Elizondo J, et al. National trends in statin use and expenditures in the US adult population from 2002 to 2013: insights from the Medical Expenditure Panel Survey. JAMA Cardiol. 2017;2(1):56–65.

    PubMed  Google Scholar 

  100. Vulic D, Lee BT, Dede J, Lopez VA, Wong ND. Extent of control of cardiovascular risk factors and adherence to recommended therapies in US multiethnic adults with coronary heart disease: from a 2005-2006 national survey. Am J Cardiovasc Drugs. 2010;10(2):109–14.

    PubMed  Google Scholar 

  101. Fung V, Graetz I, Reed M, Jaffe MG. Patient-reported adherence to statin therapy, barriers to adherence, and perceptions of cardiovascular risk. PLoS One. 2018;13(2):e0191817.

    PubMed  PubMed Central  Google Scholar 

  102. Fontana M, Asaria P, Moraldo M, et al. Patient-accessible tool for shared decision making in cardiovascular primary prevention: balancing longevity benefits against medication disutility. Circulation. 2014;129(24):2539–46.

    PubMed  PubMed Central  Google Scholar 

  103. Mamudu HM, Paul TK, Veeranki SP, Budoff M. The effects of coronary artery calcium screening on behavioral modification, risk perception, and medication adherence among asymptomatic adults: a systematic review. Atherosclerosis. 2014;236(2):338–50.

    CAS  PubMed  Google Scholar 

  104. Gupta A, Lau E, Varshney R, et al. The identification of calcified coronary plaque is associated with initiation and continuation of pharmacological and lifestyle preventive therapies: a systematic review and meta-analysis. JACC Cardiovasc Imaging. 2017;10(8):833–42.

    PubMed  PubMed Central  Google Scholar 

  105. Messenger B, Li D, Nasir K, Carr JJ, Blankstein R, Budoff MJ. Coronary calcium scans and radiation exposure in the multi-ethnic study of atherosclerosis. Int J Card Imaging. 2016;32(3):525–9.

    Google Scholar 

  106. Kim KP, Einstein AJ. Berrington de Gonzalez A: Coronary artery calcification screening: estimated radiation dose and cancer risk. Arch Intern Med. 2009;169(13):1188–94.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Ethics declarations

Conflict of Interest

Hong Loan Nguyen, Jing Liu, Maygen Del Castillo, and Tina Shah declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Global Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.L., Liu, J., Del Castillo, M. et al. Role of Coronary Calcium Score to Identify Candidates for ASCVD Prevention. Curr Atheroscler Rep 21, 53 (2019). https://doi.org/10.1007/s11883-019-0812-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-019-0812-8

Keywords

Navigation