Skip to main content
Log in

Novel Anti-glycemic Drugs and Reduction of Cardiovascular Risk in Diabetes: Expectations Realized, Promises Unmet

  • Clinical Trials and Their Interpretations (J. Kizer, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose is to review evidence on cardiovascular risks and benefits of new treatments for type 2 diabetes mellitus.

Recent Findings

In response to guidance issued by the Food and Drug Administration, thousands of patients have been enrolled in large randomized trials evaluating the cardiovascular effects of the three newest diabetes drug classes: glucagon-like peptide-1 (GLP-1) receptor agonists, sodium glucose cotransporter 2 (SGLT-2) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors. Two studies of GLP-1 receptor agonists—one of liraglutide and one of semaglutide—have shown cardiovascular benefit relative to placebo, and one study of the SGLT-2 inhibitor empagliflozin has shown benefit. The other published cardiovascular outcome studies of the newest drug classes have generally supported safety, apart from an as-yet unresolved safety concern about increased rates of heart failure with DPP-4 inhibitors. Recent research suggests the thiazolidinedione pioglitazone may have beneficial effects on some cardiovascular outcomes as well, but these are counterbalanced by a known increase of the risk of heart failure with this drug. In general, more prospective randomized trial data is now available regarding the cardiovascular effects of the newer diabetes drugs than on the older drug classes.

Summary

New evidence suggests that the newest diabetes drugs are safe from a cardiovascular perspective. Evidence on benefit from at least some members of the GLP-1 receptor agonist and SGLT-2 inhibitor classes is encouraging but not yet decisive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Go A, Mozaffarian D, Roger V, et al. Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):143–52.

    Article  PubMed  Google Scholar 

  2. Standards of Medical Care in Diabetes—2016. Diabetes Care S52–S59.

  3. Hiatt W, Kaul S, Smith R. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med. 2013;369(14):1285–7.

    Article  CAS  PubMed  Google Scholar 

  4. Smith R, Goldfine A, Hiatt W. Evaluating the cardiovascular safety of new medications for type 2 diabetes: time to reassess? Diabetes Care. 2016;39(5):738–42.

    Article  PubMed  Google Scholar 

  5. Ingelfinger J, Rosen C. Cardiac and renovascular complications in type 2 diabetes—is there hope? N Engl J Med. 2016;375(4):380–2.

    Article  PubMed  Google Scholar 

  6. Lipska K, Krumholz H. Comparing diabetes medications: where do we set the bar? JAMA Intern Med. 2014;174(3):317–8.

    Article  PubMed  Google Scholar 

  7. Association AD. Approaches to glycemic treatment. Sec. 7. In: Standards of medical care in diabetes—2016. Diabetes Care 2016;39 Suppl. 1: S52–S59.

  8. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):837–53

  9. Holman R, Paul S, Bethel M, Matthews D, Neil H. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  10. Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hampp C, Borders-Hemphill V, Moeny D, Wysowski D. Use of antidiabetic drugs in the U.S., 2003–2012. Diabetes Care. 2014;37(5):1367–74.

    Article  CAS  PubMed  Google Scholar 

  12. Nathan D. Diabetes: advances in diagnosis and treatment. JAMA. 2015;314(10):1052–62.

    Article  CAS  PubMed  Google Scholar 

  13. Goldner M, Knatterud G, Prout T. Effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. JAMA. 1971;218(9):1400–10.

    Article  CAS  PubMed  Google Scholar 

  14. Hong J, Zhang Y, Lai S, et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013;36(5):1304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Monami M, Genovese S, Mannucci E. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15(10):938–53.

    Article  CAS  PubMed  Google Scholar 

  16. Phung O, Schwartzman E, Allen R, Engel S, Rajpathak S. Sulfonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013;30(10):1160–71.

    Article  CAS  PubMed  Google Scholar 

  17. Ou S, Shih C, Chao P, et al. Effects on clinical outcomes of adding dipeptidyl peptidase-4 inhibitors versus sulfonylureas to metformin therapy in patients with type 2 diabetes mellitus. Ann Intern Med. 2015;163(9):663–72.

    Article  PubMed  Google Scholar 

  18. Morgan C, Mukherjee J, Jenkins-Jones S, Holden S, Currie C. Combination therapy with metformin plus sulfonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality. Diabetes Obes Metab. 2014;16(10):977–83.

    Article  CAS  PubMed  Google Scholar 

  19. Cryer P. Mechanisms of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2013;369(4):362–72.

    Article  CAS  PubMed  Google Scholar 

  20. Wright R, Frier B. Vascular disease and diabetes: is hypoglycemia an aggravating factor? Diabetes Metab Res Rev. 2008;24(5):353–63.

    Article  CAS  PubMed  Google Scholar 

  21. Desouza C, Bolli G, Fonesca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33(6):1389–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ashcroft F, Gribble F. Tissue-specific effects of sulfonylureas: lessons from studies of cloned K(ATP) channels. J Diabetes Complicat. 2000;14(4):192–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zunkler B. Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther. 2006;112(1):12–37.

    Article  PubMed  Google Scholar 

  24. Hattersley A, Thorens B. Type 2 diabetes, SGLT2 inhibitors, and glucose secretion. N Engl J Med. 2015;373:974–97.

    Article  CAS  PubMed  Google Scholar 

  25. Brunton S. The potential role of sodium glucose co-transporter 2 inhibitors in the early treatment of type 2 diabetes mellitus. Int J Clin Pract. 2015;69(10):1071–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inzucchi S, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ceriello A, Genovese S, Mannucci E, Gronda E. Understanding EMPA-REG OUTCOME. Lancet Diabetes Endocrinol. 2015;3(12):929–30.

    Article  PubMed  Google Scholar 

  28. Mudaliar S, Alloju S, Henry R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39(7):1115–22.

    Article  PubMed  Google Scholar 

  29. Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74.

    Article  PubMed  Google Scholar 

  30. •• Zinman B, Wanner C, Lachin J, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. Recent cardiovascular outcome study showing evidence of cardiovascular benefit from a new antidiabetic drug.

    Article  CAS  PubMed  Google Scholar 

  31. Perseghin G, Solini A. The EMPA-REG outcome study: critical appraisal and potential clinical implications. Cardiovascular Diabetol 2016;15(85).

  32. Neumiller J. Incretin-based therapies. Med Clin N Am. 2015;99(1):107–29.

    Article  PubMed  Google Scholar 

  33. Vergès B, Bonnard C, Renard E. Beyond glucose lowering: glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system. Diabetes Metab. 2011;37(6):477–88.

    Article  PubMed  Google Scholar 

  34. Poornima I, Brown S, Bhashyam S, Parikh P, Bolukoglu H, Shannon R. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008;1(3):153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Treiman M, Elvekjaer M, Engstrøm T, Jensen J. Glucagon-like peptide 1—a cardiologic dimension. Trends Cardiovasc Med. 2010;20(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  36. Sokos G, Nikolaidis L, Mankad S, Elahi D, Shannon R. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–9.

    Article  CAS  PubMed  Google Scholar 

  37. •• Marso S, Daniels G, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. Recent cardiovascular outcome study showing evidence of cardiovascular benefit from a new antidiabetic drug.

    Article  PubMed  Google Scholar 

  38. •• Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016. Recent cardiovascular outcome study showing evidence of cardiovascular benefit from a new antidiabetic drug.

  39. Pfeffer M, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.

    Article  CAS  PubMed  Google Scholar 

  40. Ban K, Noyan-Ashraf M, Hoefer J, Bolz S, Drucker D, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50.

    Article  CAS  PubMed  Google Scholar 

  41. White W, Cannon C, Heller S, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.

    Article  CAS  PubMed  Google Scholar 

  42. Green J, Bethel M, Armstrong P, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42.

    Article  CAS  PubMed  Google Scholar 

  43. Scirica B, Bhatt D, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.

    Article  CAS  PubMed  Google Scholar 

  44. Maruther N, Tseng E, Hutfless S, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016;164(11):740–51.

    Article  Google Scholar 

  45. Gilbert R, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015;385(9982):2107–17.

    Article  CAS  PubMed  Google Scholar 

  46. Filion K, Azoulay L, Platt R, et al. A multicenter observational study of incretin-based drugs and heart failure. N Engl J Med. 2016;374(12):1145–54.

    Article  CAS  PubMed  Google Scholar 

  47. Morgan C, Mukherjee J, Jenkins-Jones S, Holden S, Currie C. Combination therapy with metformin plus sulphonylureas versus metformin plus DPP-4 inhibitors: association with major adverse cardiovascular events and all-cause mortality. Diabetes Obes Metab. 2014;16(10):977–83.

    Article  CAS  PubMed  Google Scholar 

  48. Kahn C, Chen L, Cohen S. Unraveling the mechanism of action thiazolidinediones. J Clin Invest. 2000;106(11):1305–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nissen S, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    Article  CAS  PubMed  Google Scholar 

  50. Home P, Pocock S, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    Article  CAS  PubMed  Google Scholar 

  51. Psaty B, Furberg C. The record on rosiglitazone and the risk of myocardial infarction. N Engl J Med. 2007;357(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  52. Psaty B, Prentice R. Variation in event rates in trials of patients with type 2 diabetes. JAMA. 2009;302(15):1698–700.

    Article  CAS  PubMed  Google Scholar 

  53. Dormandy J, Charbonnel B, Eckland D, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomized controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  54. Erdmann E, Charbonnel B, Wilcox R, et al. Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care. 2007;30(11):2773–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kernan W, Viscoli C, Furie K, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374(14):1321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tahrani A, Barnett A, Bailey C. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12(10):566–92.

    Article  CAS  PubMed  Google Scholar 

  57. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM510017.pdf. Accessed 10 June 2016.

  58. Floyd J, Wiggins K, Sitlani C, et al. Case–control study of second-line therapies for type 2 diabetes in combination with metformin and the comparative risks of myocardial infarction and stroke. Diabetes Obes Metab. 2015;17(12):1194–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Flory.

Ethics declarations

Conflict of Interest

James H. Flory, Jenny K. Ukena, and James S. Floyd declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Clinical Trials and Their Interpretations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flory, J.H., Ukena, J.K. & Floyd, J.S. Novel Anti-glycemic Drugs and Reduction of Cardiovascular Risk in Diabetes: Expectations Realized, Promises Unmet. Curr Atheroscler Rep 18, 79 (2016). https://doi.org/10.1007/s11883-016-0633-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-016-0633-y

Keywords

Navigation