Skip to main content

Advertisement

Log in

Air Pollution and Diet: Potential Interacting Exposures in Asthma

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To provide a review of emerging literature describing the impact of diet on the respiratory response to air pollution in asthma.

Recent Findings

Asthma phenotyping (observable characteristics) and endotyping (mechanistic pathways) have increased the specificity of diagnostic and treatment pathways and opened the doors to the identification of subphenotypes with enhanced susceptibility to exposures and interventions. Mechanisms underlying the airway immune response to air pollution are still being defined but include oxidative stress, inflammation, and activation of adaptive and innate immune responses, with genetic susceptibility highlighted. Of these, neutrophil recruitment and activation appear prominent; however, understanding neutrophil function in response to pollutant exposures is a research gap. Diet may play a role in asthma pathogenesis and morbidity; therefore, diet modification is a potential target opportunity to protect against pollutant-induced lung injury. In particular, in vivo and in vitro data suggest the potential for diet to modify the inflammatory response in the airways, including impacts on neutrophil recruitment and function. Murine models provide compelling results in regard to the potential for dietary components (including fiber, antioxidants, and omega-3 fatty acids) to buffer against the inflammatory response to air pollution in the lung.

Summary

Precision lifestyle approaches to asthma management and respiratory protection in the context of air pollution exposures may evolve to include diet, pending the results of further epidemiologic and causal investigation and with neutrophil recruitment and activation as a candidate mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

This is a review rather than a primary data analysis- this should not apply. 

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance •• Of major importance

  1. Hooper LG, Kaufman JD. Ambient air pollution and clinical implications for susceptible populations. Ann Am Thorac Soc. 2018;15(Suppl 2):S64–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Health impacts [Internet]. [cited 2023 Apr 21]. Available from https://www.who.int/teams/environment-climate-change-and-health/air-quality-and-health/health-impacts.

  3. Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M. Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017;100:1–31.

    Article  CAS  PubMed  Google Scholar 

  4. Burbank AJ, Peden DB. Assessing the impact of air pollution on childhood asthma morbidity: how, when and what to do. Curr Opin Allergy Clin Immunol. 2018;18(2):124–31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. To T, Zhu J, Stieb D, Gray N, Fong I, Pinault L, et al. Early life exposure to air pollution and incidence of childhood asthma, allergic rhinitis and eczema. Eur Respir J [Internet]. 2020 Feb 1 [cited 2023 Apr 21];55(2). Available from https://erj.ersjournals.com/content/55/2/1900913.

  6. Altman MC, Kattan M, O’Connor GT, Murphy RC, Whalen E, LeBeau P, et al. Associations between outdoor air pollutants and non-viral asthma exacerbations and airway inflammatory responses in children and adolescents living in urban areas in the USA: a retrospective secondary analysis. Lancet Planet Health. 2023;7(1):e33–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, et al. Outdoor air pollution and new-onset airway disease. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc. 2020;17(4):387–98.

  8. Doiron D, Hoogh K de, Probst-Hensch N, Fortier I, Cai Y, Matteis SD, et al. Air pollution, lung function and COPD: results from the population-based UK Biobank study. Eur Respir J [Internet]. 2019 Jul 1 [cited 2023 Apr 21];54(1). Available from https://erj.ersjournals.com/content/54/1/1802140.

  9. • Milner J, Hamilton I, Woodcock J, Williams M, Davies M, Wilkinson P, et al. Health benefits of policies to reduce carbon emissions. BMJ [Internet]. 2020 Mar 30 [cited 2023 Apr 21];368. Available from https://www.bmj.com/content/368/bmj.l6758Summary of actions to reduce emissions.

  10. Brugge D, Patton AP, Bob A, Reisner E, Lowe L, Bright O-JM, et al. Developing community-level policy and practice to reduce traffic-related air pollution exposure. Environ Justice Print. 2015 Jun;8(3):95–104.

  11. Davison G, Barkjohn KK, Hagler GSW, Holder AL, Coefield S, Noonan C, et al. Creating clean air spaces during wildland fire smoke episodes: web summit summary. Front Public Health [Internet]. 2021 Feb 15 [cited 2023 Apr 21];9. Available from https://doi.org/10.3389/fpubh.2021.508971/full.

  12. Laumbach RJ, Cromar KR. Personal interventions to reduce exposure to outdoor air pollution. Annu Rev Public Health. 2022;43(1):293–309.

    Article  PubMed  Google Scholar 

  13. • The evidence is clear: the time for action is now. We can halve emissions by 2030. — IPCC [Internet]. [cited 2023 Apr 21]. Available from https://www.ipcc.ch/2022/04/04/ipcc-ar6-wgiii-pressrelease/Intergovernmental Panel on Climate Change report regarding the state of the science on global emissions and climate change.

  14. House TW. FACT SHEET: Biden administration launches effort to improve ventilation and reduce the spread of COVID-19 in buildings [Internet]. The White House. 2022 [cited 2023 Apr 21]. Available from https://www.whitehouse.gov/briefing-room/statements-releases/2022/03/17/fact-sheet-biden-administration-launches-effort-to-improve-ventilation-and-reduce-the-spread-of-covid-19-in-buildings/.

  15. Ramírez AS, Ramondt S, Van Bogart K, Zuniga RP. Public awareness of air pollution and health threats: challenges and opportunities for communication strategies to improve environmental health literacy. J Health Commun. 2019;24(1):75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reports [Internet]. Global initiative for asthma - GINA. [cited 2023 Apr 21]. Available from https://ginasthma.org/reports/.

  17. Brigham EP, West NE. Diagnosis of asthma: diagnostic testing. Int Forum Allergy Rhinol. 2015;5(S1):S27–30.

    Article  PubMed  Google Scholar 

  18. • Kuruvilla ME, Lee FE-H, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–33. A key review of endotypes, phenotypes, and biologic pathways in asthma.

  19. Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1–12.

    Article  PubMed  Google Scholar 

  20. Calhoun WJ, Chupp GL. The new era of add-on asthma treatments: where do we stand? Allergy Asthma Clin Immunol. 2022;18(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Svenningsen S, Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Front Med [Internet]. 2017 [cited 2023 Apr 21];4. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622943/.

  22. Fahy JV. Type 2 inflammation in asthma — present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med. 2006;203(6):1435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patel NN, Kohanski MA, Maina IW, Workman AD, Herbert DR, Cohen NA. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol. 2019;9(1):93–9.

    Article  PubMed  Google Scholar 

  25. Poulsen LK, Hummelshoj L. Triggers of IgE class switching and allergy development. Ann Med. 2007;39(6):440–56.

    Article  CAS  PubMed  Google Scholar 

  26. Locksley RM. Asthma and Allergic Inflammation. Cell. 2010;140(6):777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coverstone AM, Seibold MA, Peters MC. Diagnosis and management of T2-high asthma. J Allergy Clin Immunol Pract. 2020;8(2):442–50.

    Article  PubMed  Google Scholar 

  28. Payton AD, Perryman AN, Hoffman JR, Avula V, Wells H, Robinette C, et al. Cytokine signature clusters as a tool to compare changes associated with tobacco product use in upper and lower airway samples. Am J Physiol-Lung Cell Mol Physiol. 2022;322(5):L722–36.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma Nat Rev Dis Primer. 2015;1(1):15025.

    Article  Google Scholar 

  30. • Fitzpatrick AM, Chipps BE, Holguin F, Woodruff PG. T2-“low” asthma: overview and management strategies. J Allergy Clin Immunol Pract. 2020;8(2):452–63. Key review of T2-low asthma, for which fewer targeted treatment strategies are available.

    Article  PubMed  Google Scholar 

  31. Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res [Internet]. 2021 [cited 2023 Apr 22];7(2). Available from https://openres.ersjournals.com/content/7/2/00309-2020.

  32. Papaioannou AI, Diamant Z, Bakakos P, Loukides S. Towards precision medicine in severe asthma: Treatment algorithms based on treatable traits. Respir Med. 2018;1(142):15–22.

    Article  Google Scholar 

  33. Tliba O, Panettieri RA. Paucigranulocytic asthma: uncoupling of airway obstruction from inflammation. J Allergy Clin Immunol. 2019;143(4):1287–94.

    Article  PubMed  Google Scholar 

  34. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–9.

    Article  CAS  PubMed  Google Scholar 

  35. Parnes JR, Molfino NA, Colice G, Martin U, Corren J, Menzies-Gow A. Targeting TSLP in asthma. J Asthma Allergy. 2022;3(15):749–65.

    Article  Google Scholar 

  36. Wu AY, Peebles RS. The emerging role of IL-23 in asthma and its clinical implications. Expert Rev Clin Immunol. 2023;19(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  37. Peebles RS, Aronica MA. Proinflammatory pathways in the pathogenesis of asthma. Clin Chest Med. 2019;40(1):29–50.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zakeri A, Russo M. Dual role of toll-like receptors in human and experimental asthma models. Front Immunol. 2018;15(9):1027.

    Article  Google Scholar 

  39. Shilovskiy IP, Nikolskii AA, Kurbacheva OM, Khaitov MR. Modern view of neutrophilic asthma molecular mechanisms and therapy. Biochem Mosc. 2020;85(8):854–68.

    Article  CAS  Google Scholar 

  40. Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy. 2020;75(2):311–25.

    Article  PubMed  Google Scholar 

  41. Kunkel SL, Standiford T, Kasahara K, Strieter RM. Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp Lung Res. 1991;17(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  42. •• Nair P, Surette MG, Virchow JC. Neutrophilic asthma: misconception or misnomer? Lancet Respir Med. 2021;9(5):441–3. Reconsideration of airway neutrophilia as a more common response to several noxious exposures (including air pollution), and contextualization within the definition of neutrophilic asthma.

    Article  CAS  PubMed  Google Scholar 

  43. Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P, Lokwani R, et al. Neutrophils in asthma: the good, the bad and the bacteria. Thorax. 2021;76(8):835–44.

    Article  PubMed  Google Scholar 

  44. Wenzel S. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;1(368):804–13.

    Article  Google Scholar 

  45. Pignatti P, Visca D, Cherubino F, Zampogna E, Saderi L, Zappa M, et al. Mixed granulocytic phenotype in asthmatic patients. Eur Respir J [Internet]. 2019 [cited 2023 Apr 8];54(suppl 63). Available from https://erj.ersjournals.com/content/54/suppl_63/PA2587.

  46. Chu DK, Al-Garawi A, Llop-Guevara A, Pillai RA, Radford K, Shen P, et al. Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin Immunol. 2015;11(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Therapeutic efficacy of IL-17A neutralization with corticosteroid treatment in a model of antigen-driven mixed-granulocytic asthma | Am J Physiol Lung Cell Mol Physiol [Internet]. [cited 2023 Apr 22]. Available from https://doi.org/10.1152/ajplung.00204.2020.

  48. Pleil JD, Wallace MAG, Davis MD, Matty CM. The physics of human breathing: flow, timing, volume, and pressure parameters for normal, on-demand, and ventilator respiration. J Breath Res. 2021;15(4). https://doi.org/10.1088/1752-7163/ac2589.

  49. Carvalho TC, Peters JI, Williams RO. Influence of particle size on regional lung deposition – what evidence is there? Int J Pharm. 2011;406(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  50. •• Particle deposition in the respiratory tract. [Internet]. [cited 2023 Apr 22]. Available from https://www.scopus.com/record/display.uri?eid=2-s2.0-79951576216&origin=inward&txGid=aabeb681787c61e2c095da845c02f6de. Description of respiratory penetration of particles by size in the respiratory tract, fundamental to understanding of respiratory particulate matter exposure.

  51. • Passage of Inhaled Particles Into the Blood Circulation in Humans | Circulation [Internet]. [cited 2023 Apr 22]. Available from https://doi.org/10.1161/hc0402.104118. Evidence of translocation of particulate matter air pollution into the systemic circulation.

  52. Kwon H-S, Ryu MH, Carlsten C. Ultrafine particles: unique physicochemical properties relevant to health and disease. Exp Mol Med. 2020;52(3):318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. • Tuazon JA, Kilburg-Basnyat B, Oldfield LM, Wiscovitch-Russo R, Dunigan-Russell K, Fedulov AV, et al. Emerging insights into the impact of air pollution on immune-mediated asthma pathogenesis. Curr Allergy Asthma Rep. 2022;22(7):77–92. Key review on mechanism of air pollution impact on asthma health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Epithelial lining fluid - an overview | ScienceDirect Topics [Internet]. [cited 2023 Apr 22]. Available from https://www.sciencedirect.com/topics/medicine-and-dentistry/epithelial-lining-fluid.

  55. Kelly FJ, Mudway I, Blomberg A, Frew A, Sandström T. Altered lung antioxidant status in patients with mild asthma. The Lancet. 1999;354(9177):482–3.

    Article  CAS  Google Scholar 

  56. Kongerud J, Crissman K, Hatch G, Alexis N. Ascorbic acid is decreased in induced sputum of mild asthmatics. Inhal Toxicol. 2003;15(2):101–9.

    Article  CAS  PubMed  Google Scholar 

  57. Glencross DA, Ho T-R, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020;1(151):56–68.

    Article  Google Scholar 

  58. Bauer RN, Diaz-Sanchez D, Jaspers I. Effects of air pollutants on innate immunity: the role of toll-like receptors and nucleotide-binding oligomerization domain–like receptors. J Allergy Clin Immunol. 2012;129(1):14–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nagappan A, Park SB, Lee S-J, Moon Y. Mechanistic implications of biomass-derived particulate matter for immunity and immune disorders. Toxics. 2021;9(2):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mack SM, Madl AK, Pinkerton KE. Respiratory health effects of exposure to ambient particulate matter and bioaerosols. Compr Physiol. 2019;10(1):1–20.

    PubMed  PubMed Central  Google Scholar 

  61. • Alexis NE, Eldridge MW, Peden DB. Effect of inhaled endotoxin on airway and circulating inflammatory cell phagocytosis and CD11b expression in atopic asthmatic subjects. J Allergy Clin Immunol. 2003;112(2):353–61. This publication highlights the impact of a ubiquitous air pollutant (LPS) on innate immune cell function.

    Article  CAS  PubMed  Google Scholar 

  62. Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol. 2013;9(10):899–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castañeda AR, Pinkerton KE, Bein KJ, Magaña-Méndez A, Yang HT, Ashwood P, et al. Ambient particulate matter activates the aryl hydrocarbon receptor in dendritic cells and enhances Th17 polarization. Toxicol Lett. 2018;292:85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pfeffer PE, Ho TR, Mann EH, Kelly FJ, Sehlstedt M, Pourazar J, et al. Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes. Immunology. 2018;153(4):502–12.

    Article  CAS  PubMed  Google Scholar 

  65. Goossens J, Jonckheere A-C, Dupont LJ, Bullens DMA. Air pollution and the airways: lessons from a century of human urbanization. Atmosphere. 2021;12(7):898.

    Article  CAS  Google Scholar 

  66. •• Diesel exhaust augments allergen-induced lower airway inflammation in allergic individuals: a controlled human exposure study | Thorax [Internet]. [cited 2023 Apr 23]. Available from https://thorax.bmj.com/content/71/1/35.short. Human controlled exposure demonstrating causal evidence of effect of exposure to diesel exhaust on respiratory immune response.

  67. Alexis NE, Becker S, Bromberg PA, Devlin R, Peden DB. Circulating CD11b expression correlates with the neutrophil response and airway mCD14 expression is enhanced following ozone exposure in humans. Clin Immunol. 2004;111(1):126–31.

    Article  CAS  PubMed  Google Scholar 

  68. Swiston JR, Davidson W, Attridge S, Li GT, Brauer M, van Eeden SF. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J. 2008;32(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  69. •• Ghio AJ, Soukup JM, Case M, Dailey LA, Richards J, Berntsen J, et al. Exposure to wood smoke particles produces inflammation in healthy volunteers. Occup Environ Med. 2012;69(3):170–5. Human controlled exposure demonstrating causal evidence of effect of exposure to woodsmoke on inflammation.

    Article  PubMed  Google Scholar 

  70. • Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA. Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020. Heliyon. 2022;8(1):e08778. Unifying review on the neutrophil predominance in air pollution response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lazaar AL, Sweeney LE, MacDonald AJ, Alexis NE, Chen C, Tal-Singer R. SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br J Clin Pharmacol. 2011;72(2):282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Wooding DJ, Ryu MH, Li H, Alexis NE, Pena O, Carlsten C. Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans. Eur Respir J [Internet]. 2020 [cited 2023 Feb 17];55(4). Available from https://erj.ersjournals.com/content/55/4/1901495. Human controlled exposure to diesel exhaust and impact on neutrophil function as exemplified by Neutrophil Extracellular Traps (NETs).

  73. Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev [Internet]. 2022 Mar 31 [cited 2023 Apr 9];31(163). Available from https://err.ersjournals.com/content/31/163/210241.

  74. Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, et al. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev [Internet]. 2022 [cited 2023 Apr 9];31(163). Available from https://err.ersjournals.com/content/31/163/210112.

  75. Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol. 2010;126(4):845–852.e10.

    Article  CAS  PubMed  Google Scholar 

  76. Kelly FJ, Fussell JC. Linking ambient particulate matter pollution effects with oxidative biology and immune responses. Ann N Y Acad Sci. 2015;1340:84–94.

    Article  CAS  PubMed  Google Scholar 

  77. Li N, Hao M, Phalen RF, Hinds WC, Nel AE. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol Orlando Fla. 2003;109(3):250–65.

  78. Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60(8):612–6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Soumana IH, Carlsten C. Air pollution and the respiratory microbiome. J Allergy Clin Immunol. 2021;148(1):67–9.

    Article  Google Scholar 

  80. Raudoniute J, Bironaite D, Bagdonas E, Kulvinskiene I, Jonaityte B, Danila E, et al. Human airway and lung microbiome at the crossroad of health and disease (Review). Exp Ther Med. 2023;25(1):1–10.

    Google Scholar 

  81. Dujardin CE, Mars RAT, Manemann SM, Kashyap PC, Clements NS, Hassett LC, et al. Impact of air quality on the gastrointestinal microbiome: A review. Environ Res. 2020;1(186): 109485.

    Article  Google Scholar 

  82. Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019;12(4):843–50.

    Article  CAS  PubMed  Google Scholar 

  83. Espírito Santo C, Caseiro C, Martins MJ, Monteiro R, Brandão I. Gut microbiota, in the halfway between nutrition and lung function. Nutrients [Internet]. 2021 [cited 2023 May 1];13(5). Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159117/.

  84. Dusinska M, Staruchova M, Horska A, Smolkova B, Collins A, Bonassi S, et al. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutat Res. 2012;736(1–2):130–7.

    Article  CAS  PubMed  Google Scholar 

  85. Hayes JD, Strange RC. Potential contribution of the glutathione S-transferase supergene family to resistance to oxidative stress. Free Radic Res. 1995;22(3):193–207.

    Article  CAS  PubMed  Google Scholar 

  86. Zeng X, Tian G, Zhu J, Yang F, Zhang R, Li H, et al. Air pollution associated acute respiratory inflammation and modification by GSTM1 and GSTT1 gene polymorphisms: a panel study of healthy undergraduates. Environ Health. 2023;22(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alexis NE, Lay JC, Zhou H, Kim CS, Hernandez ML, Kehrl H, et al. The glutathione-s-transferase null genotype and increased neutrophil response to low level ozone (0.06 ppm). J Allergy Clin Immunol. 2013;131(2):610–2.

  88. • Burbank AJ, Vadlamudi A, Mills KH, Alt EM, Wells H, Zhou H, et al. The glutathione-S-transferase mu-1 null genotype increases wood smoke-induced airway inflammation. J Allergy Clin Immunol. 2019;143(6):2299–2302.e3. Further evidence of a common null genotype as a genetic susceptibility to neutrophil response to air pollution exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. • Alexis NE, Zhou LY, Burbank AJ, Almond M, Hernandez ML, Mills KH, et al. Development of a screening protocol to identify persons who are responsive to wood smoke particle-induced airway inflammation with pilot assessment of GSTM1 genotype and asthma status as response modifiers. Inhal Toxicol. 2022;34(11–12):329–39. Demonstrates the existence of an inflammatory responder phenotype to wood smoke particles and GSTM1null genotype as an important modifier of this response.

    Article  CAS  PubMed  Google Scholar 

  90. • Fry RC, Rager JE, Bauer R, Sebastian E, Peden DB, Jaspers I, et al. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects. Am J Physiol - Lung Cell Mol Physiol. 2014;306(12):L1129–37. Noted the role of microRNAs in the airways following ozone exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gomez JL, Chen A, Diaz MP, Zirn N, Gupta A, Britto C, et al. A network of sputum MicroRNAs is associated with neutrophilic airway inflammation in asthma. Am J Respir Crit Care Med. 2020;202(1):51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Visser E, de Jong K, Pepels JJS, Kerstjens HAM, ten Brinke A, van Zutphen T. Diet quality, food intake and incident adult-onset asthma: a lifelines cohort study. Eur J Nutr [Internet]. 2023 [cited 2023 Apr 10]; Available from https://doi.org/10.1007/s00394-023-03091-2.

  93. Garcia-Larsen V, Arthur R, Potts JF, Howarth PH, Ahlström M, Haahtela T, et al. Is fruit and vegetable intake associated with asthma or chronic rhino-sinusitis in European adults? Results from the global allergy and asthma network of excellence (GA2 LEN) survey. Clin Transl Allergy. 2017;7(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bédard A, Garcia-Aymerich J, Sanchez M, Le Moual N, Clavel-Chapelon F, Boutron-Ruault M-C, et al. Confirmatory factor analysis compared with principal component analysis to derive dietary patterns: a longitudinal study in adult women1, 2, 3. J Nutr. 2015;145(7):1559–68.

    Article  PubMed  Google Scholar 

  95. Varraso R, Kauffmann F, Leynaert B, Moual NL, Boutron-Ruault MC, Clavel-Chapelon F, et al. Dietary patterns and asthma in the E3N study. Eur Respir J. 2009;33(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  96. Varraso R, Fung TT, Hu FB, Willett W, Camargo CA. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US men. Thorax. 2007;62(9):786–91.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Varraso R, Fung TT, Barr RG, Hu FB, Willett W, Camargo CA. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US women. Am J Clin Nutr. 2007;86(2):488–95.

    Article  CAS  PubMed  Google Scholar 

  98. Hlaing-Hlaing H, Dolja-Gore X, Tavener M, James EL, Hodge AM, Hure AJ. Diet quality and incident non-communicable disease in the 1946–1951 cohort of the australian longitudinal study on women’s health. Int J Environ Res Public Health. 2021;18(21):11375.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Varraso R, Chiuve SE, Fung TT, Barr RG, Hu FB, Willett WC, et al. Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: prospective study. BMJ. 2015;3(350):h286.

    Article  Google Scholar 

  100. Nagel G, Linseisen J. Dietary intake of fatty acids, antioxidants and selected food groups and asthma in adults. Eur J Clin Nutr. 2005;59(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  101. Varraso R, Barr RG, Willett WC, Speizer FE, Camargo CA. Fish intake and risk of chronic obstructive pulmonary disease in 2 large US cohorts2, 3. Am J Clin Nutr. 2015;101(2):354–61.

    Article  CAS  PubMed  Google Scholar 

  102. Jiang R, Camargo CA, Varraso R, Paik DC, Willett WC, Barr RG. Consumption of cured meats and prospective risk of chronic obstructive pulmonary disease in women. Am J Clin Nutr. 2008;87(4):1002–8.

    Article  CAS  PubMed  Google Scholar 

  103. Varraso R, Jiang R, Barr RG, Willett WC, Camargo CA Jr. Prospective study of cured meats consumption and risk of chronic obstructive pulmonary disease in men. Am J Epidemiol. 2007;166(12):1438–45.

    Article  PubMed  Google Scholar 

  104. • Li J, Xun P, Zamora D, Sood A, Liu K, Daviglus M, et al. Intakes of long-chain omega-3 (n−3) PUFAs and fish in relation to incidence of asthma among American young adults: the CARDIA study1,2,3. Am J Clin Nutr. 2013;97(1):173–8. Epidemiologic evidence supporting a relationship between omega-3 fatty acid intake and incident asthma in a large US population study.

    Article  CAS  PubMed  Google Scholar 

  105. Uddenfeldt M, Janson C, Lampa E, Leander M, Norbäck D, Larsson L, et al. High BMI is related to higher incidence of asthma, while a fish and fruit diet is related to a lower–: results from a long-term follow-up study of three age groups in Sweden. Respir Med. 2010;104(7):972–80.

    Article  PubMed  Google Scholar 

  106. Nuzzi G, Di Cicco M, Trambusti I, Agosti M, Peroni DG, Comberiati P. Primary prevention of pediatric asthma through nutritional interventions. Nutrients. 2022;14(4):754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Willers SM, Wijga AH, Brunekreef B, Scholtens S, Postma DS, Kerkhof M, et al. Childhood diet and asthma and atopy at 8 years of age: the PIAMA birth cohort study. Eur Respir J. 2011;37(5):1060–7.

    Article  CAS  PubMed  Google Scholar 

  108. • Guilleminault L, Williams EJ, Scott HA, Berthon BS, Jensen M, Wood LG. Diet and asthma: is it time to adapt our message? Nutrients. 2017;9(11):1227. Key review of evidence regarding linkage between diet and asthma incidence and morbidity in adult and pediatric populations.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brigham EP, Kolahdooz F, Hansel N, Breysse PN, Davis M, Sharma S, et al. Association between Western diet pattern and adult asthma: a focused review. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol. 2015;114(4):273–80.

    Article  Google Scholar 

  110. Shi Z, El-Obeid T, Meftah Z, Alawi A, Said S, Ganji V. Fast food and sweet intake pattern is directly associated with the prevalence of asthma in a Qatari population. Eur J Clin Nutr. 2022;76(3):428–33.

    Article  PubMed  Google Scholar 

  111. Garcia-Marcos L, Canflanca IM, Garrido JB, Varela AL-S, Garcia-Hernandez G, Guillen Grima F, et al. Relationship of asthma and rhinoconjunctivitis with obesity, exercise and Mediterranean diet in Spanish schoolchildren. Thorax. 2007;62(6):503–8.

  112. Garcia-Marcos L, Castro-Rodriguez JA, Weinmayr G, Panagiotakos DB, Priftis KN, Nagel G. Influence of Mediterranean diet on asthma in children: a systematic review and meta-analysis. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2013;24(4):330–8.

    Article  CAS  Google Scholar 

  113. Garcia-Larsen V, Del Giacco SR, Moreira A, Bonini M, Charles D, Reeves T, et al. Asthma and dietary intake: an overview of systematic reviews. Allergy. 2016;71(4):433–42.

    Article  CAS  PubMed  Google Scholar 

  114. • Dietary assessment primer [Internet]. [cited 2023 Apr 10]. Available from https://dietassessmentprimer.cancer.gov/Important methodological reference for dietary assessment.

  115. Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem. 2008;19(9):587–93.

    Article  CAS  PubMed  Google Scholar 

  116. •• McLoughlin R, Berthon BS, Rogers GB, Baines KJ, Leong LEX, Gibson PG, et al. Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. EBioMedicine. 2019;46:473–85. Causal evidence regarding fiber supplementation in asthma.

  117. Poli V, Pui-Yan Ma V, Di Gioia M, Broggi A, Benamar M, Chen Q, et al. Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation. iScience. 2021;24(11):103256.

  118. Hamam HJ, Palaniyar N. Histone deacetylase inhibitors dose-dependently switch neutrophil death from NETosis to apoptosis. Biomolecules. 2019;9(5):184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hamam HJ, Khan MA, Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules. 2019;9(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  120. •• Halnes I, Baines KJ, Berthon BS, MacDonald-Wicks LK, Gibson PG, Wood LG. Soluble fibre meal challenge reduces airway inflammation and expression of GPR43 and GPR41 in asthma. Nutrients. 2017;9(1):57. Causal evidence regarding fiber supplementation in asthma.

  121. Walrand S, Farges M-C, Dehaese O, Cardinault N, Minet-Quinard R, Grolier P, et al. In vivo and in vitro evidences that carotenoids could modulate the neutrophil respiratory burst during dietary manipulation. Eur J Nutr. 2005;44(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  122. Chew BP, Park JS. Carotenoid action on the immune response. J Nutr. 2004;134(1):257S–261S.

    Article  CAS  PubMed  Google Scholar 

  123. Wood LG, Gibson PG. Dietary factors lead to innate immune activation in asthma. Pharmacol Ther. 2009;123(1):37–53.

    Article  CAS  PubMed  Google Scholar 

  124. Han Y-Y, Forno E, Holguin F, Celedón JC. Diet and asthma: an update. Curr Opin Allergy Clin Immunol. 2015;15(4):369–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Natarajan TD, Ramasamy JR, Palanisamy K. Nutraceutical potentials of synergic foods: a systematic review. J Ethn Foods. 2019;6(1):27.

    Article  Google Scholar 

  126. Ellwood P, Asher MI, García-Marcos L, Williams H, Keil U, Robertson C, et al. Do fast foods cause asthma, rhinoconjunctivitis and eczema? Global findings from the International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three. Thorax. 2013;68(4):351–60.

    Article  PubMed  Google Scholar 

  127. Fogarty AW, Antoniak M, Venn AJ, Davies L, Goodwin A, Salfield N, et al. A natural experiment on the impact of fruit supplementation on asthma symptoms in children. Eur Respir J. 2009;33(3):481–5.

    Article  CAS  PubMed  Google Scholar 

  128. Hosseini B, Berthon BS, Wark P, Wood LG. Effects of fruit and vegetable consumption on risk of asthma, wheezing and immune responses: a systematic review and meta-analysis. Nutrients. 2017;9(4):341.

    Article  PubMed  PubMed Central  Google Scholar 

  129. •• Wood LG, Garg ML, Smart JM, Scott HA, Barker D, Gibson PG. Manipulating antioxidant intake in asthma: a randomized controlled trial. Am J Clin Nutr. 2012;96(3):534–43. Randomized controlled trial evaluating the relative impact of fruits and vegetables and antioxidant supplements on asthma morbidity.

  130. Wood LG, Garg ML, Powell H, Gibson PG. Lycopene-rich treatments modify noneosinophilic airway inflammation in asthma: proof of concept. Free Radic Res. 2008;42(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  131. • Berthon BS, McLoughlin RF, Jensen ME, Hosseini B, Williams EJ, Baines KJ, et al. The effects of increasing fruit and vegetable intake in children with asthma: a randomized controlled trial. Clin Exp Allergy. 2021;51(9):1144–56. ( Trial of increasing fruit and vegetable intake in children with asthma.)

    Article  CAS  PubMed  Google Scholar 

  132. Hosseini B, Berthon BS, Jensen ME, McLoughlin RF, Wark PAB, Nichol K, et al. The effects of increasing fruit and vegetable intake in children with asthma on the modulation of innate immune responses. Nutrients. 2022;14(15):3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Aung HH, Vasu VT, Valacchi G, Corbacho AM, Kota RS, Lim Y, et al. Effects of dietary carotenoids on mouse lung genomic profiles and their modulatory effects on short-term cigarette smoke exposures. Genes Nutr. 2009;4(1):23–39.

    Article  CAS  PubMed  Google Scholar 

  134. Tashiro H, Kasahara DI, Osgood RS, Brown T, Cardoso A, Cho Y, et al. Sex differences in the impact of dietary fiber on pulmonary responses to ozone. Am J Respir Cell Mol Biol. 2020;62(4):503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jang YO, Kim O-H, Kim SJ, Lee SH, Yun S, Lim SE, et al. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism. Sci Rep. 2021;11(1):7008.

    Article  PubMed  PubMed Central  Google Scholar 

  136. • Lin H, Guo Y, Di Q, Zheng Y, Xian H, Li X, et al. Consumption of fruit and vegetables might mitigate the adverse effects of ambient PM2.5 on lung function among adults. Environ Res. 2018;160:77–82. Epidemiologic evidence in support of a potential interactive effect between diet and air pollution on lung function.

  137. Romieu I, Barraza-Villarreal A, Escamilla-Núñez C, Texcalac-Sangrador JL, Hernandez-Cadena L, Díaz-Sánchez D, et al. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants. Respir Res. 2009;10(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gerster H. Can adults adequately convert alpha-linolenic acid (18:3n–3) to eicosapentaenoic acid (20:5n–3) and docosahexaenoic acid (22:6n–3)? Int J Vitam Nutr Res Int Z Vitam- Ernahrungsforschung J Int Vitaminol Nutr. 1998;68(3):159–73.

    CAS  Google Scholar 

  139. Plourde M, Cunnane SC. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2007;32(4):619–34.

    Article  CAS  Google Scholar 

  140. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Krishnamoorthy N, Abdulnour R-EE, Walker KH, Engstrom BD, Levy BD. Specialized proresolving mediators in innate and adaptive immune responses in airway diseases. Physiol Rev. 2018;98(3):1335–70.

  142. Troisi RJ, Willett WC, Weiss ST, Trichopoulos D, Rosner B, Speizer FE. A prospective study of diet and adult-onset asthma. Am J Respir Crit Care Med. 1995;151(5):1401–8.

    Article  CAS  PubMed  Google Scholar 

  143. Papamichael MM, Shrestha SK, Itsiopoulos C, Erbas B. The role of fish intake on asthma in children: a meta-analysis of observational studies. Pediatr Allergy Immunol Off Publ Eur Soc Pediatr Allergy Immunol. 2018;29(4):350–60.

    Article  CAS  Google Scholar 

  144. Stoodley I, Garg M, Scott H, Macdonald-Wicks L, Berthon B, Wood L. Higher omega-3 index is associated with better asthma control and lower medication dose: a cross-sectional study. Nutrients. 2019;12(1):74.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Miyata J, Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol Int. 2015;64(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  146. Nagakura T, Matsuda S, Shichijyo K, Sugimoto H, Hata K. Dietary supplementation with fish oil rich in omega-3 polyunsaturated fatty acids in children with bronchial asthma. Eur Respir J. 2000;16(5):861–5.

    Article  CAS  PubMed  Google Scholar 

  147. Tull SP, Yates CM, Maskrey BH, O’Donnell VB, Madden J, Grimble RF, et al. Omega-3 fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment. PLOS Biol. 2009;7(8):e1000177.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Spinosa M, Su G, Salmon MD, Lu G, Cullen JM, Fashandi AZ, et al. Resolvin D1 decreases abdominal aortic aneurysm formation by inhibiting NETosis in a mouse model. J Vasc Surg. 2018;68(6S):93S–103S.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Svahn SL, Ulleryd MA, Grahnemo L, Ståhlman M, Borén J, Nilsson S, et al. Dietary omega-3 fatty acids increase survival and decrease bacterial load in mice subjected to Staphylococcus aureus-Induced sepsis. Infect Immun. 2016;84(4):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pisani LF, Lecchi C, Invernizzi G, Sartorelli P, Savoini G, Ceciliani F. In vitro modulatory effect of omega-3 polyunsaturated fatty acid (EPA and DHA) on phagocytosis and ROS production of goat neutrophils. Vet Immunol Immunopathol. 2009;131(1–2):79–85.

    Article  CAS  PubMed  Google Scholar 

  151. Gorjão R, Verlengia R, de Lima TM, Soriano FG, Boaventura MFC, Kanunfre CC, et al. Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin Nutr Edinb Scotl. 2006;25(6):923–38.

    Article  Google Scholar 

  152. •• Nordgren TM, Friemel TD, Heires AJ, Poole JA, Wyatt TA, Romberger DJ. The omega-3 fatty acid docosahexaenoic acid attenuates organic dust-induced airway inflammation. Nutrients. 2014;6(12):5434–52. Causal study demonstrating potentially protective role of DHA in buffering against the effects of air pollution on respiratory inflammation in a mouse model.

  153. Li X-Y, Hao L, Liu Y-H, Chen C-Y, Pai VJ, Kang JX. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids. Biochim Biophys Acta BBA - Gen Subj. 2017;1861(3):577–84.

    Article  CAS  Google Scholar 

  154. Li J, Mao M, Li J, Chen Z, Ji Y, Kong J, et al. Oral Administration of omega-3 fatty acids attenuates lung injury caused by PM2.5 respiratory inhalation simply and feasibly in vivo. Int J Mol Sci. 2022;23(10):5323.

  155. • Ulu A, Burr A, Heires AJ, Pavlik J, Larsen T, Perez PA, et al. A high docosahexaenoic acid diet alters lung inflammation and recovery following repetitive exposure to aqueous organic dust extracts. J Nutr Biochem. 2021;97:108797. Further supportive evidence of the potential lung-protective effect of DHA in the setting of organic dust exposure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen H, Zhang S, Shen W, Salazar C, Schneider A, Wyatt L, et al. The influence of dietary intake of omega-3 polyunsaturated fatty acids on the association between short-term exposure to ambient nitrogen dioxide and respiratory and cardiovascular outcomes among healthy adults. Environ Health. 2021;20(1):123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. • Tong H, Zhang S, Shen W, Chen H, Salazar C, Schneider A, et al. Lung function and short-term ambient air pollution exposure: differential impacts of omega-3 and omega-6 fatty acids. Ann Am Thorac Soc. 2022;19(4):583–93. Epidemiologic evidence of an impact of omega-3 and omega-6 (including biologic markers of intake) and delayed response to air pollution.

    Article  PubMed  Google Scholar 

  158. • Brigham EP, Woo H, McCormack M, Rice J, Koehler K, Vulcain T, et al. Omega-3 and omega-6 intake modifies asthma severity and response to indoor air pollution in children. Am J Respir Crit Care Med. 2019;199(12):1478–86. Epidemiologic evidence supporting effect modification of the respiratory response to air pollution by a measure of omega-3 and omega-6 intake.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. •• Chen H, Tong H, Shen W, Montilla TS, Case MW, Almond MA, et al. Fish oil blunts lung function decrements induced by acute exposure to ozone in young healthy adults: A randomized trial. Environ Int. 2022;167:107407. Human study of controlled exposure to ozone, demonstrating a beneficial effect of omega-3 supplementation in the acute setting.

  160. Vardavas CI, Flouris AD, Tsatsakis A, Kafatos AG, Saris WHM. Does adherence to the Mediterranean diet have a protective effect against active and passive smoking? Public Health. 2011;125(3):121–8.

    Article  CAS  PubMed  Google Scholar 

  161. •• Wood LG, Garg ML, Gibson PG. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J Allergy Clin Immunol. 2011;127(5):1133–40. Causal evidence of airway pro-inflammatory effects of a high-fat challenge in participants with asthma.

  162. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41–8.

    Article  CAS  PubMed  Google Scholar 

  163. Bibus D, Lands B. Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids. Prostaglandins Leukot Essent Fatty Acids. 2015;1(99):19–23.

    Article  Google Scholar 

  164. Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, et al. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients. 2019;11(10).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Brigham.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments involving human or animal subjects performed by the authors were in accordance with the ethical standards of institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brigham, E., Hashimoto, A. & Alexis, N.E. Air Pollution and Diet: Potential Interacting Exposures in Asthma. Curr Allergy Asthma Rep 23, 541–553 (2023). https://doi.org/10.1007/s11882-023-01101-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01101-1

Keywords

Navigation