Skip to main content

Advertisement

Log in

Environmental Exposure to Foods as a Risk Factor for Food Allergy

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Many factors have been reported to contribute to the development of food allergy. Here, we summarize the role of environmental exposure to foods as a major risk factor for developing food allergy.

Recent Findings

Peanut proteins are detectable and biologically active in household environments, where infants spend a majority of their time, providing an environmental source of allergen exposure. Recent evidence from clinical studies and mouse models suggests both the airway and skin are routes of exposure that lead to peanut sensitization.

Summary

Environmental exposure to peanut has been clearly associated with the development of peanut allergy, although other factors such as genetic predisposition, microbial exposures, and timing of oral feeding of allergens also likely contribute. Future studies should more comprehensively assess the contributions of each of these factors for a variety of food allergens to provide more clear targets for prevention of food allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, et al. Prevalence and severity of food allergies among US adults. JAMA Netw Open. 2019;2:e185630.

    PubMed  PubMed Central  Google Scholar 

  2. Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124:1549–55.

    PubMed  Google Scholar 

  3. Burks AW. Peanut allergy. Lancet. 2008;371:1538–46.

    CAS  PubMed  Google Scholar 

  4. Investigators PGoC, Vickery BP, Vereda A, Casale TB, Beyer K, du Toit G, et al. AR101 oral immunotherapy for peanut allergy. N Engl J Med. 2018;379:1991–2001.

  5. Avery NJ, King RM, Knight S, Hourihane JO. Assessment of quality of life in children with peanut allergy. Pediatr Allergy Immunol. 2003;14:378–82.

    PubMed  Google Scholar 

  6. Tordesillas L, Berin MC. Mechanisms of oral tolerance. Clin Rev Allergy Immunol. 2018;55:107–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Smeekens JM, Kulis MD. Evolution of immune responses in food immunotherapy. Immunol Allergy Clin North Am. 2020;40:87–95.

    PubMed  Google Scholar 

  8. Sicherer SH, Burks AW, Sampson HA. Clinical features of acute allergic reactions to peanut and tree nuts in children. Pediatrics. 1998;102:e6.

    CAS  PubMed  Google Scholar 

  9. Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol. 2012;129:1187–97.

    PubMed  Google Scholar 

  10. Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015;372:803–13.

    PubMed  PubMed Central  Google Scholar 

  11. Du Toit G, Sayre PH, Roberts G, Sever ML, Lawson K, Bahnson HT, et al. Effect of avoidance on peanut allergy after early peanut consumption. N Engl J Med. 2016;374:1435–43.

    PubMed  Google Scholar 

  12. Perkin MR, Logan K, Tseng A, Raji B, Ayis S, Peacock J, et al. Randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med. 2016;374:1733–43.

    CAS  PubMed  Google Scholar 

  13. Sicherer SH, Sampson HA. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141:41–58.

    CAS  PubMed  Google Scholar 

  14. Peters RL, Mavoa S, Koplin JJ. An overview of environmental risk factors for food allergy. Int J Environ Res Public Health. 2022;19.

  15. Moran TP. Impact of the exposome on food allergy development. Curr Opin Allergy Clin Immunol. 2023;23:164–71.

    CAS  PubMed  Google Scholar 

  16. Yu JE, Mallapaty A, Miller RL. It’s not just the food you eat: environmental factors in the development of food allergies. Environ Res. 2018;165:118–24.

    CAS  PubMed  Google Scholar 

  17. Maciag MC, Sheehan WJ, Bartnikas LM, Lai PS, Petty CR, Filep S, et al. Detection of food allergens in school and home environments of elementary students. J Allergy Clin Immunol Pract. 2021;9:3735–43.

    PubMed  PubMed Central  Google Scholar 

  18. Bertelsen RJ, Faeste CK, Granum B, Egaas E, London SJ, Carlsen KH, et al. Food allergens in mattress dust in Norwegian homes - a potentially important source of allergen exposure. Clin Exp Allergy. 2014;44:142–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brough HA, Makinson K, Penagos M, Maleki SJ, Cheng H, Douiri A, et al. Distribution of peanut protein in the home environment. J Allergy Clin Immunol. 2013;132:623–9.

    CAS  PubMed  Google Scholar 

  20. Sheehan WJ, Brough HA, Makinson K, Petty CR, Lack G, Phipatanakul W. Distribution of peanut protein in school and home environments of inner-city children. J Allergy Clin Immunol. 2017;140:1724–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brough HA, Mills ENC, Richards K, Lack G, Johnson PE. Mass spectrometry confirmation that clinically important peanut protein allergens are present in household dust. Allergy. 2020;75:709–12.

    PubMed  Google Scholar 

  22. Brough HA, Santos AF, Makinson K, Penagos M, Stephens AC, Douiri A, et al. Peanut protein in household dust is related to household peanut consumption and is biologically active. J Allergy Clin Immunol. 2013;132:630–8.

    CAS  PubMed  Google Scholar 

  23. Brough HA, Liu AH, Sicherer S, Makinson K, Douiri A, Brown SJ, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135:164–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Trendelenburg V, Tschirner S, Niggemann B, Beyer K. Hen’s egg allergen in house and bed dust is significantly increased after hen’s egg consumption-a pilot study. Allergy. 2018;73:261–4.

    CAS  PubMed  Google Scholar 

  25. Witteman AM, van Leeuwen J, van der Zee J, Aalberse RC. Food allergens in house dust. Int Arch Allergy Immunol. 1995;107:566–8.

    CAS  PubMed  Google Scholar 

  26. Ng N, Lam D, Paulus P, Batzer G, Horner AA. House dust extracts have both TH2 adjuvant and tolerogenic activities. J Allergy Clin Immunol. 2006;117:1074–81.

    CAS  PubMed  Google Scholar 

  27. Moran TP, Nakano K, Whitehead GS, Thomas SY, Cook DN, Nakano H. Inhaled house dust programs pulmonary dendritic cells to promote type 2 T-cell responses by an indirect mechanism. Am J Physiol Lung Cell Mol Physiol. 2015;309:L1208–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gough L, Sewell HF, Shakib F. The proteolytic activity of the major dust mite allergen Der p 1 enhances the IgE antibody response to a bystander antigen. Clin Exp Allergy. 2001;31:1594–8.

    CAS  PubMed  Google Scholar 

  29. Boasen J, Chisholm D, Lebet L, Akira S, Horner AA. House dust extracts elicit Toll-like receptor-dependent dendritic cell responses. J Allergy Clin Immunol. 2005;116:185–91.

    CAS  PubMed  Google Scholar 

  30. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 2015;349:1106–10.

    CAS  PubMed  Google Scholar 

  31. Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med. 2016;375:411–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill DJ, Sporik R, Thorburn J, Hosking CS. The association of atopic dermatitis in infancy with immunoglobulin E food sensitization. J Pediatr. 2000;137:475–9.

    CAS  PubMed  Google Scholar 

  33. Elias PM, Steinhoff M. “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. J Invest Dermatol. 2008;128:1067–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brough HA, Kull I, Richards K, Hallner E, Söderhäll C, Douiri A, et al. Environmental peanut exposure increases the risk of peanut sensitization in high-risk children. Clin Exp Allergy. 2018;48:586–93.

    CAS  PubMed  Google Scholar 

  35. Brough HA, Simpson A, Makinson K, Hankinson J, Brown S, Douiri A, et al. Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol. 2014;134:867-75.e1.

    PubMed  PubMed Central  Google Scholar 

  36. • Tsilochristou O, du Toit G, Sayre PH, Roberts G, Lawson K, Sever ML, et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J Allergy Clin Immunol. 2019;144:494–503. Independent of eczema severity, Staphylococcus aureus colonization was associated with food allergy in LEAP participants.

    PubMed  Google Scholar 

  37. Chan SM, Turcanu V, Stephens AC, Fox AT, Grieve AP, Lack G. Cutaneous lymphocyte antigen and α4β7 T-lymphocyte responses are associated with peanut allergy and tolerance in children. Allergy. 2012;67:336–42.

    CAS  PubMed  Google Scholar 

  38. DeLong JH, Simpson KH, Wambre E, James EA, Robinson D, Kwok WW. Ara h 1-reactive T cells in individuals with peanut allergy. J Allergy Clin Immunol. 2011;127:1211-8.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Blom LH, Juel-Berg N, Larsen LF, Hansen KS, Poulsen LK. Circulating allergen-specific T. J Allergy Clin Immunol. 2018;141:1498-501.e5.

    CAS  PubMed  Google Scholar 

  40. Ganeshan K, Neilsen CV, Hadsaitong A, Schleimer RP, Luo X, Bryce PJ. Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J Allergy Clin Immunol. 2009;123:231-8.e4.

    CAS  PubMed  Google Scholar 

  41. Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol. 2000;106:150–8.

    CAS  PubMed  Google Scholar 

  42. Walker MT, Green JE, Ferrie RP, Queener AM, Kaplan MH, Cook-Mills JM. Mechanism for initiation of food allergy: dependence on skin barrier mutations and environmental allergen costimulation. J Allergy Clin Immunol. 2018;141:1711-25.e9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Clin Exp Allergy. 2005;35:757–66.

    CAS  PubMed  Google Scholar 

  44. • Buelow LM, Hoji A, Tat K, Schroeder-Carter LM, Carroll DJ, Cook-Mills JM. Mechanisms for Alternaria alternata function in the skin during induction of peanut allergy in neonatal mice with skin barrier mutations. Front Allergy. 2021;2:677019. Flaky tail mice exposed to peanut with Alternaria alternata, a fungal allergen commonly found in household dust, led to peanut-specific IgE and anaphylaxis to peanut through pathways involving IL-33, oncostatin M, and amphiregulin induced in the skin.

    PubMed  PubMed Central  Google Scholar 

  45. Tordesillas L, Goswami R, Benede S, Grishina G, Dunkin D, Jarvinen KM, et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest. 2014;124:4965–75.

    PubMed  PubMed Central  Google Scholar 

  46. •• Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M, Musser MA, et al. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity. 2019;50:1262-75.e4. Tape stripping mice led to mast cell expansion in the gut by skin-derived IL-33, gut-derived IL-25, ILC2 activation, and IL-4 production, demonstrating a direct link between skin barrier disruption and intestinal response.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartnikas LM, Gurish MF, Burton OT, Leisten S, Janssen E, Oettgen HC, et al. Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. J Allergy Clin Immunol. 2013;131:451–60.e1–6.

  48. Wavrin S, Bernard H, Wal JM, Adel-Patient K. Cutaneous or respiratory exposures to peanut allergens in mice and their impacts on subsequent oral exposure. Int Arch Allergy Immunol. 2014;164:189–99.

    CAS  PubMed  Google Scholar 

  49. Dunkin D, Berin MC, Mayer L. Allergic sensitization can be induced via multiple physiologic routes in an adjuvant-dependent manner. J Allergy Clin Immunol. 2011;128:1251-8.e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao H, Jorgensen R, Raghunath R, Ng PKW, Gangur V. An adjuvant-free mouse model using skin sensitization without tape-stripping followed by oral elicitation of anaphylaxis: a novel pre-clinical tool for testing intrinsic wheat allergenicity. Front Allergy. 2022;3:926576.

    PubMed  PubMed Central  Google Scholar 

  51. Birmingham NP, Parvataneni S, Hassan HM, Harkema J, Samineni S, Navuluri L, et al. An adjuvant-free mouse model of tree nut allergy using hazelnut as a model tree nut. Int Arch Allergy Immunol. 2007;144:203–10.

    CAS  PubMed  Google Scholar 

  52. Parvataneni S, Gonipeta B, Tempelman RJ, Gangur V. Development of an adjuvant-free cashew nut allergy mouse model. Int Arch Allergy Immunol. 2009;149:299–304.

    CAS  PubMed  Google Scholar 

  53. Parvataneni S, Gonipeta B, Acharya HG, Gangur V. An adjuvant-free mouse model of transdermal sensitization and oral elicitation of anaphylaxis to shellfish. Int Arch Allergy Immunol. 2015;168:269–76.

    CAS  PubMed  Google Scholar 

  54. Gonipeta B, Parvataneni S, Tempelman RJ, Gangur V. An adjuvant-free mouse model to evaluate the allergenicity of milk whey protein. J Dairy Sci. 2009;92:4738–44.

    CAS  PubMed  Google Scholar 

  55. Navuluri L, Parvataneni S, Hassan H, Birmingham NP, Kelly C, Gangur V. Allergic and anaphylactic response to sesame seeds in mice: identification of Ses i 3 and basic subunit of 11s globulins as allergens. Int Arch Allergy Immunol. 2006;140:270–6.

    CAS  PubMed  Google Scholar 

  56. •• Kulis MD, Smeekens JM, Immormino RM, Moran TP. The airway as a route of sensitization to peanut: an update to the dual allergen exposure hypothesis. J Allergy Clin Immunol. 2021;148:689–93. An updated dual allergen exposure hypothesis including non-oral sensitization through both the airway and skin, citing human and mouse data.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. • Smeekens JM, Immormino RM, Balogh PA, Randell SH, Kulis MD, Moran TP. Indoor dust acts as an adjuvant to promote sensitization to peanut through the airway. Clin Exp Allergy. 2019;49:1500–11. A mouse model demonstrating sensitization to peanut through the airway by co-administration of peanut and household dust, supporting the role of environmental adjuvants in non-oral sensitization.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dolence JJ, Kobayashi T, Iijima K, Krempski J, Drake LY, Dent AL, et al. Airway exposure initiates peanut allergy by involving the IL-1 pathway and T follicular helper cells in mice. J Allergy Clin Immunol. 2018;142:1144-58.e8.

    CAS  PubMed  Google Scholar 

  59. Smeekens JM, Immormino RM, Kulis MD, Moran TP. Timing of exposure to environmental adjuvants is critical to mitigate peanut allergy. J Allergy Clin Immunol. 2021;147:387-90.e4.

    CAS  PubMed  Google Scholar 

  60. Aitoro R, Paparo L, Amoroso A, Di Costanzo M, Cosenza L, Granata V, et al. Gut microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients. 2017;9.

  61. Brough HA, Lanser BJ, Sindher SB, Teng JMC, Leung DYM, Venter C, et al. Early intervention and prevention of allergic diseases. Allergy. 2022;77:416–41.

    PubMed  Google Scholar 

  62. Baek JH, Shin YH, Chung IH, Kim HJ, Yoo EG, Yoon JW, et al. The link between serum vitamin D level, sensitization to food allergens, and the severity of atopic dermatitis in infancy. J Pediatr. 2014;165:849-54.e1.

    CAS  PubMed  Google Scholar 

  63. Allen KJ, Koplin JJ, Ponsonby AL, Gurrin LC, Wake M, Vuillermin P, et al. Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J Allergy Clin Immunol. 2013;131(1109–16):16.e1-6.

    Google Scholar 

  64. Weisse K, Winkler S, Hirche F, Herberth G, Hinz D, Bauer M, et al. Maternal and newborn vitamin D status and its impact on food allergy development in the German LINA cohort study. Allergy. 2013;68:220–8.

    CAS  PubMed  Google Scholar 

  65. Mullins RJ, Camargo CA. Latitude, sunlight, vitamin D, and childhood food allergy/anaphylaxis. Curr Allergy Asthma Rep. 2012;12:64–71.

    CAS  PubMed  Google Scholar 

  66. Vassallo MF, Camargo CA. Potential mechanisms for the hypothesized link between sunshine, vitamin D, and food allergy in children. J Allergy Clin Immunol. 2010;126:217–22.

    CAS  PubMed  Google Scholar 

  67. Papathoma E, Triga M, Fouzas S, Dimitriou G. Cesarean section delivery and development of food allergy and atopic dermatitis in early childhood. Pediatr Allergy Immunol. 2016;27:419–24.

    PubMed  Google Scholar 

  68. Wypych TP, Marsland BJ. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 2018;39:697–711.

    CAS  PubMed  Google Scholar 

  69. Grimshaw KE, Maskell J, Oliver EM, Morris RC, Foote KD, Mills EN, et al. Diet and food allergy development during infancy: birth cohort study findings using prospective food diary data. J Allergy Clin Immunol. 2014;133:511–9.

    PubMed  Google Scholar 

  70. Peters RL, Allen KJ, Dharmage SC, Lodge CJ, Koplin JJ, Ponsonby AL, et al. Differential factors associated with challenge-proven food allergy phenotypes in a population cohort of infants: a latent class analysis. Clin Exp Allergy. 2015;45:953–63.

    CAS  PubMed  Google Scholar 

  71. Goldberg MR, Mor H, Magid Neriya D, Magzal F, Muller E, Appel MY, et al. Microbial signature in IgE-mediated food allergies. Genome Med. 2020;12:92.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. • Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019;25:448–53. Germ-free mice colonized with the fecal microbiome from cow’s milk allergic infants were sensitized to milk allergens while the fecal microbiome from healthy infants protected mice from sensitization.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014;80:2546–54.

    PubMed  PubMed Central  Google Scholar 

  74. Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, et al. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol. 2016;138:1122–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Berni Canani R, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016;10:742–50.

    CAS  PubMed  Google Scholar 

  76. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang L, Chun Y, Ho HE, Arditi Z, Lo T, Sajja S, et al. Multiscale study of the oral and gut environments in children with high- and low-threshold peanut allergy. J Allergy Clin Immunol. 2022;150:714-20.e2.

    CAS  PubMed  Google Scholar 

  78. Ho HE, Chun Y, Jeong S, Jumreornvong O, Sicherer SH, Bunyavanich S. Multidimensional study of the oral microbiome, metabolite, and immunologic environment in peanut allergy. J Allergy Clin Immunol. 2021;148:627-32.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Joseph CL, Sitarik AR, Kim H, Huffnagle G, Fujimura K, Yong GJM, et al. Infant gut bacterial community composition and food-related manifestation of atopy in early childhood. Pediatr Allergy Immunol. 2022;33:e13704.

    CAS  PubMed  Google Scholar 

  80. Bao R, Hesser LA, He Z, Zhou X, Nadeau KC, Nagler CR. Fecal microbiome and metabolome differ in healthy and food-allergic twins. J Clin Invest. 2021;131.

  81. Hourihane JO, Dean TP, Warner JO. Peanut allergy in relation to heredity, maternal diet, and other atopic diseases: results of a questionnaire survey, skin prick testing, and food challenges. BMJ. 1996;313:518–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sicherer SH, Furlong TJ, Maes HH, Desnick RJ, Sampson HA, Gelb BD. Genetics of peanut allergy: a twin study. J Allergy Clin Immunol. 2000;106:53–6.

    CAS  PubMed  Google Scholar 

  83. Hong X, Tsai HJ, Wang X. Genetics of food allergy. Curr Opin Pediatr. 2009;21:770–6.

    PubMed  PubMed Central  Google Scholar 

  84. Tsai HJ, Kumar R, Pongracic J, Liu X, Story R, Yu Y, et al. Familial aggregation of food allergy and sensitization to food allergens: a family-based study. Clin Exp Allergy. 2009;39:101–9.

    CAS  PubMed  Google Scholar 

  85. Kanchan K, Grinek S, Bahnson HT, Ruczinski I, Shankar G, Larson D, et al. HLA alleles and sustained peanut consumption promote IgG4 responses in subjects protected from peanut allergy. J Clin Invest. 2022;132.

  86. Huffaker MF, Kanchan K, Bahnson HT, Baloh C, Lack G, Nepom GT, et al. Incorporating genetics in identifying peanut allergy risk and tailoring allergen immunotherapy: a perspective on the genetic findings from the LEAP trial. J Allergy Clin Immunol. 2023;151:841–7.

    CAS  PubMed  Google Scholar 

  87. Zhou X, Han X, Lyu SC, Bunning B, Kost L, Chang I, et al. Targeted DNA methylation profiling reveals epigenetic signatures in peanut allergy. JCI Insight. 2021;6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna M. Smeekens.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, A.V., Smeekens, J.M. Environmental Exposure to Foods as a Risk Factor for Food Allergy. Curr Allergy Asthma Rep 23, 427–433 (2023). https://doi.org/10.1007/s11882-023-01091-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01091-0

Keywords

Navigation