Skip to main content
Log in

Air Sampling and Analysis of Aeroallergens: Current and Future Approaches

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review current air sampling instruments and analysis methods and to describe new approaches being developed.

Recent Findings

Spore trap sampling with analysis by microscopy remains the most widely used methods for aeroallergen determination even though there are often long delays from sample acquisition to data availability, as well as a need for specially-trained staff for sample analysis. The use of immunoassays and molecular biology to analyze outdoor or indoor samples has expanded in recent years and has provided valuable data on allergen exposure. New automated sampling devices capture pollen, analyze, and identify pollen grains by light scattering, laser-induced fluorescence, microscopy, or holography using signal or image processing to classify the pollen in real time or near real time.

Summary

Air sampling data from current methods provide valuable information on aeroallergen exposure. The automated devices in use and under development show great potential but are not ready to replace existing aeroallergen networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Stetzenbach LD. Introduction to Aerobiology. In: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD, editors. Manual of Environmental Microbiology. 3rd ed. Washington, D.C.: American Society of Microbiology Press; 2007. p 923–38.

    Chapter  Google Scholar 

  2. Haskell RJ, Barss H. Fred Campbell Meier, 1893–1938. Phytopathology. 1939;29:293–302.

    Google Scholar 

  3. Lacey ME, West JS. The air spora: a manual for catching and identifying airborne biological particles. Dordrecht, The Netherlands: Springer; 2006.

    Book  Google Scholar 

  4. Evan AT, Flamant C, Gaetani M, Guichard F. The past, present and future of African dust. Nature. 2016;531(7595):493–5. https://doi.org/10.1038/nature17149.

    Article  CAS  PubMed  Google Scholar 

  5. Levetin E. Methods for aeroallergen sampling. Curr Allergy Asthma Rep. 2004;4(5):376–83.

    Article  PubMed  Google Scholar 

  6. Di-Giovanni F. A review of the sampling efficiency of rotating-arm impactors used in aerobiological studies. Grana. 1998;37(3):164–71.

    Article  Google Scholar 

  7. Blackley CH. Experimental researches on the causes and nature of Catarrhus aestivus (hay-fever or hay-asthma). London: Baillière, Tindall & Cox; 1873.

    Google Scholar 

  8. Burge HA. Monitoring for airborne allergens. Ann Allergy. 1992;69(1):9–18.

    CAS  PubMed  Google Scholar 

  9. Durham OC. Cooperative studies in ragweed pollen incidence: atmospheric data from twenty-two cities. J Allergy. 1929;1(1):12–21.

    Article  Google Scholar 

  10. Durham OC. The pollen content of the air in North America. J Allergy. 1935;6(2):128–49.

    Article  Google Scholar 

  11. Durham OC. The volumetric incidence of atmospheric allergens; a proposed standard method of gravity sampling, counting, and volumetric interpolation of results. J Allergy. 1946;17:79–86.

    Article  CAS  PubMed  Google Scholar 

  12. Mitman G. A history of pollen mapping and surveillance: the relations between natural history and clinical allergy. J Allergy Clin Immun. 2004;114:1230–5. https://doi.org/10.1016/j.jaci.2004.08.016.

    Article  PubMed  Google Scholar 

  13. Muilenberg ML. Sampling devices. Immunol Allergy Clin North Am. 2003;23(3):337–55.

    Article  PubMed  Google Scholar 

  14. Bainbridge A, Brent KJ. John Malcolm Hirst, D. S. C. 20 April 1921–30 December 1997. Biographical Memoirs of Fellows of the Royal Society. 1999;45: 221–238.

  15. Buters JTM, Antunes C, Galveias A, Bergmann KC, Thibaudon M, Galán C, et al. Pollen and spore monitoring in the world. Clin Transl Allergy. 2018;8:9. https://doi.org/10.1186/s13601-018-0197-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Levetin E, Pityn PJ, Ramon GD, Pityn E, Anderson J, Bielory L, et al. Aeroallergen monitoring by the National Allergy Bureau: a review of the past and a look into the future. J Allergy Clin Immunol Prac. 2023 (in press). https://doi.org/10.1016/j.jaip.2022.11.026.

  17. Leighton PA, Perkins WA, Grinnell SW, Webster FX. The fluorescent particle atmospheric tracer. J Appl Meteorol Clim. 1965;4(3):334–48.

    Article  Google Scholar 

  18. Frenz DA. Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Ann Allergy Asthma Immunol. 1999;83(5):341–7.

    Article  CAS  PubMed  Google Scholar 

  19. Solomon WR, Burge HA, Boise JR, Becker M. Comparative particle recoveries by the retracting rotorod, rotoslide and Burkard spore trap sampling in a compact array. Int J Biometeor. 1980;24(2):107–16.

    Article  Google Scholar 

  20. May KR, Pomeroy NP, Hibbs S. Sampling techniques for large windborne particles. J Aerosol Sci. 1976;7(1):53–62.

    Article  Google Scholar 

  21. Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microb. 2002;68(4):1743–53. https://doi.org/10.1128/AEM.68.4.1743-1753.2002.

    Article  CAS  Google Scholar 

  22. Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. Indoor Air. 2015;25:125–56. https://doi.org/10.1111/ina.12182.

    Article  CAS  PubMed  Google Scholar 

  23. Reboux G, Rocchi S, Laboissière A, Ammari H, Bochaton M, Gardin G, Rame JM, Millon L. Survey of 1012 moldy dwellings by culture fungal analysis: threshold proposal for asthmatic patient management. Indoor Air. 2019;29(1):5–16. https://doi.org/10.1111/ina.12516.

    Article  PubMed  Google Scholar 

  24. Peccia J, Hernandez M. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos Environ. 2006;40:3941–61. https://doi.org/10.1016/j.atmosenv.2006.02.029.

    Article  CAS  Google Scholar 

  25. Cox J, Mbareche H, Lindsley WG, Duchaine C. Field sampling of indoor bioaerosols, Aeros Sci Tech. 2020;54:572–584. https://doi.org/10.1080/02786826.2019.1688759.

  26. Lindsley WG, Green BJ, Blachere FM, Martin SB, Law BF, Jensen PA, Schafer MP. Sampling and characterization of bioaerosols. In: Ashley K, O’Connor PF, editors. NIOSH Manual of Analytical Methods. 5th ed. Cincinnati, OH: National Institute for Occupational Safety and Health. 2017.

  27. Saldanha R, Manno M, Saleh M, Ewaze JO, Scott JA. The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air. 2008;18(6):464–72. https://doi.org/10.1111/j.1600-0668.2008.00547.x.

    Article  CAS  PubMed  Google Scholar 

  28. • Mainelis G. Bioaerosol sampling: classical approaches, advances, and perspectives. Aerosol Sci Tech 2020;54(5):496–519. https://doi.org/10.1080/02786826.2019.1671950. In depth review of current bioaerosol sampling methods, especially for indoor environments.

  29. Pumkaeo P, Iwahashi H. Bioaerosol sources, sampling methods, and major categories: A comprehensive overview. Rev Ag Sci. 2020;8:261–78. https://doi.org/10.7831/ras.8.0_261.

    Article  Google Scholar 

  30. Aizenberg V, Reponen T, Grinshpun SA, Willeke K. Performance of Air-O-Cell, Burkard, and Button samplers for total enumeration of airborne spores. Am Ind Hyg Assoc J. 2000;61(6):855–64. https://doi.org/10.1080/15298660008984598.

    Article  CAS  Google Scholar 

  31. Pityn PJ, Anderson J. Air sampling of mold spores by slit impactors: yield comparison. J Env Sci Health, Part A. 2013;48:1485–90. https://doi.org/10.1080/10934529.2013.796817.

    Article  CAS  Google Scholar 

  32. Scott JA, Summerbell RC, Green BJ. Detection of indoor fungi bioaerosols. In: Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living 2011 (pp. 353–379). Wageningen Academic Publishers, Wageningen.

  33. Environmental Protection Agency. Indoor air facts No. 4 (revised) sick building syndrome. Research and Development (MD-56). 1991. https://www.epa.gov/sites/default/files/2014-08/documents/sick_building_factsheet.

  34. Prezant B, Weekes D, and Miller J (editors). Recognition, evaluation and control of indoor mold. Fairfax, VA. Am Ind Hygiene Assoc. 2008.

  35. Leaderer BP, Belanger K, Triche E, Holford T, Gold DR, Kim Y, et al. Dust mite, cockroach, cat, and dog allergen concentrations in homes of asthmatic children in the northeastern United States: impact of socioeconomic factors and population density. Envir Health Perspect. 2002;110(4):419–25. https://doi.org/10.1289/ehp.02110419.

    Article  Google Scholar 

  36. Ahluwalia SK, Matsui EC. Indoor environmental interventions for furry pet allergens, pest allergens, and mold: looking to the future. J Allergy Clin Immunol Pract. 2018;6:9–19. https://doi.org/10.1016/j.jaip.2017.10.009.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kristono GA, Shorter C, Pierse N, Crane J, Siebers R. Endotoxin, cat, and house dust mite allergens in electrostatic cloths and bedroom dust. J Occup Environ Hyg. 2019;16(1):89–96. https://doi.org/10.1080/15459624.2018.1536827.

    Article  PubMed  Google Scholar 

  38. Green BJ, Lemons AR, Park Y, Cox-Ganser JM, Park JH. Assessment of fungal diversity in a water-damaged office building. J Occup Environ Hyg. 2017;14:285–93. https://doi.org/10.1080/15459624.2016.1252044.

    Article  PubMed  PubMed Central  Google Scholar 

  39. • Cochran SJ, Acosta L, Divjan A, Lemons AR, Rundle AG, Miller RL, Sobek E, Green BJ, Perzanowski MS, Dannemiller KC. Spring is associated with increased total and allergenic fungal concentrations in house dust from a pediatric asthma cohort in New York City. Build Environ. 2022;226:109711. https://doi.org/10.1016/j.buildenv.2022.109711. This study uses next generation sequencing and qPCR to determine seasonal exposure to fungi in New York City homes.

  40. Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig RE, Berger U, Clot B, Brandao R. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia. 2014;30(4):385–95. https://doi.org/10.1007/s10453-014-9335-5.

    Article  Google Scholar 

  41. Kapyla M, Penttinen A. An evaluation of the microscopical counting methods of the tape in Hirst-Burkard pollen and spore trap. Grana. 1981;20:131–41.

    Article  Google Scholar 

  42. Comtois P, Alcazar P, Néron D. Pollen counts statistics and its relevance to precision. Aerobiologia. 1999;15(1):19–28. https://doi.org/10.1023/A:1007501017470.

    Article  Google Scholar 

  43. Cariñanos P, Emberlin J, Galán C, Dominguez-Vilches E. Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia. 2000;16:339–46. https://doi.org/10.1023/A:1026577406912.

    Article  Google Scholar 

  44. McLoud JD, Levetin E. Magnifying: The truth behind fungal spore counts. J Allergy Clin Immunol. 2015;135(2):AB231. https://doi.org/10.1016/j.jaci.2014.12.1689

  45. Sterling M, Rogers C, Levetin E. An evaluation of two methods used for microscopic analysis of airborne fungal spore concentrations from the Burkard Spore Trap. Aerobiologia. 1999;15:9–18. https://doi.org/10.1023/A:1007561201541.

    Article  Google Scholar 

  46. European Standard EN 16868:2019 Ambient air – Sampling and analysis of airborne pollen grains and fungal spores for networks related to allergy – Volumetric Hirst method. https://www.en-standard.eu/csn-en-16868

  47. Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne fungal fragments and allergenicity. Med Mycol. 2006;44:S245–55. https://doi.org/10.1080/13693780600776308.

    Article  CAS  PubMed  Google Scholar 

  48. J Buters M Prank M Sofiev G Pusch R Albertini I Annesi-Maesano et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season J Allergy Clin Immunol 2015;136(1):8795e6 https://doi.org/10.1016/j.jaci.2015.01.049

  49. De Linares C, Alcázar P, Valle AM, de la Guardia CD, Galán C. Parietaria major allergens vs pollen in the air we breathe. Environ Res. 2019;176:108–514. https://doi.org/10.1016/j.envres.2019.05.045

  50. De Linares C, Navarro D, Puigdemunt R, Belmonte J. Airborne Alt a 1 dynamic and its relationship with the airborne dynamics of Alternaria conidia and Pleosporales spores. J Fungi. 2022; 8(2):125jof8020125.

  51. Gasana J, Ibrahimou B, Albatineh AN, Al-Zoughool M, Zein D. Exposures in the indoor environment and prevalence of allergic conditions in the United States of America. Int J Environ Res Public Health. 2021;18(9):4945. https://doi.org/10.3390/ijerph18094945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grewling Ł, Bogawski P, Szymańska A, Nowak M, Kostecki Ł, Smith M. Particle size distribution of the major Alternaria alternata allergen, Alt a 1, derived from airborne spores and subspore fragments. Fungal Biol. 2020;124:219–27. https://doi.org/10.1016/j.funbio.2020.02.005.

    Article  CAS  PubMed  Google Scholar 

  53. Kristono GA, Shorter C, Pierse N, Crane J, Siebers R. Endotoxin, cat, and house dust mite allergens in electrostatic cloths and bedroom dust. J Occup Environ Hyg. 2019;16:89–96. https://doi.org/10.1080/15459624.2018.1536827.

    Article  PubMed  Google Scholar 

  54. • Nachtnebel M, Führer B, Ettenberger-Bornberg G, Mertl J, Kaufmann L, Schroettner H, et al. Determination of ragweed allergen Amb a 1 distribution in aerosols using ELISA and immunogold scanning electron microscopy. J Allergy Clinic Immunol: Global. 2022;1:265–272. COMMENT: This study found high levels of ragweed Amb a 1 allergen after the peak pollen season had ended.

  55. Suanno C, Sandrini S, Aloisi I, De Nuntiis P, Facchini MC, Del Duca S, et al. Airborne pollen, allergens, and proteins: A comparative study of three sampling methods. Sustainability. 2022;14(19):11825. https://doi.org/10.3390/su141911825.

    Article  Google Scholar 

  56. Zahradnik E, Sander I, Kleinmüller O, Beine A, Hoffmeyer F, Nienhaus A, Raulf M. Use of nasal filters for allergen exposure measurements in veterinary practices. Environ Occup Health Practice. 2022. https://doi.org/10.1539/eohp.2022-0002-OA.

    Article  Google Scholar 

  57. Zahradnik E, Raulf M. Development of mold antigen-specific enzyme-linked immunosorbent assays (ELISA) to quantify airborne antigen exposure. In: Lympany P, Jones M, eds. Allergy Methods in Molecular Biology, Vol 2020. 2019 (pp. 115–130). Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9591-2_8

  58. Grimsley LF, Chulada PC, Kennedy S, White L, Wildfire J, Cohn RD, et al. Indoor environmental exposures for children with asthma enrolled in the HEAL study, post-Katrina New Orleans. Environ Health Persp. 2012;120:1600–6. https://doi.org/10.1289/ehp.1104840.

    Article  Google Scholar 

  59. Prester L, Macan J, Matkovic K, Vucemilo M. Determination of Aspergillus fumigatus allergen 1 in poultry farms using the enzyme immunoassay. Arch Indus Hyg Toxicol. 2010;61:167–73. https://doi.org/10.2478/10004-1254-61-2010-2004.

    Article  CAS  Google Scholar 

  60. Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Persp. 2011;119(6):748–56. https://doi.org/10.1289/ehp.1002410.

    Article  CAS  Google Scholar 

  61. Lau AP, Lee AK, Chan CK, Fang M. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmos Environ. 2006;40:249–59. https://doi.org/10.1016/j.atmosenv.2005.09.048.

    Article  CAS  Google Scholar 

  62. Holme JA, Øya E, Afanou AK, Øvrevik J, Eduard W. Characterization and pro-inflammatory potential of indoor mold particles. Indoor Air. 2020;30(4):662–81. https://doi.org/10.1111/ina.12656.

    Article  CAS  PubMed  Google Scholar 

  63. Huttunen K, Wlodarczyk AJ, Tirkkonen J, Mikkonen S, Täubel M, Krop E, Jacobs J, Pekkanen J, Heederik D, Zock JP, Hyvärinen A. Oxidative capacity and hemolytic activity of settled dust from moisture-damaged schools. Indoor Air. 2019;29:299–307. https://doi.org/10.1111/ina.12527.

    Article  CAS  PubMed  Google Scholar 

  64. Douwes J. (1–> 3)-Beta-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air. 2005;15(3):160–9. https://doi.org/10.1111/j.1600-0668.2005.00333.x.

    Article  CAS  PubMed  Google Scholar 

  65. Li DW, Johanning E, Yang CS. Airborne fungi and mycotoxins, p 3.2.5: 1–21. In Yates M, Nakatsu C, Miller R, Pillai S (ed), Manual of Environmental Microbiology, 4th Edition. ASM Press, Washington, DC. 2016. https://doi.org/10.1128/9781555818821.ch3.2.5.

  66. Gottschalk C, Bauer J, Meyer K. Detection of satratoxin G and H in indoor air from a water-damaged building Mycopathologia.  2008;16(62):103–107 https://doi.org/10.1007/s11046-008-9126-z.

  67. Peitzsch M, Sulyok M, Täubel M, Vishwanath V, Krop E, Borras-Santos A, Hyvärinen A, Nevalainen A, Krska R, Larsson L. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. J Environ Monitor. 2012;14(8):2044–53. https://doi.org/10.1039/c2em30195d.

    Article  CAS  Google Scholar 

  68. Lanier C, Richard E, Heutte N, Picquet R, Bouchart V, Garon D. Airborne molds and mycotoxins associated with handling of corn silage and oilseed cakes in agricultural environment. Atmos Environ. 2010;44:1980–6. https://doi.org/10.1016/j.atmosenv.2010.02.040.

    Article  CAS  Google Scholar 

  69. Mendy A, Wilkerson J, Salo PM, Weir CH, Feinstein L, Zeldin DC, et al. Synergistic association of house endotoxin exposure and ambient air pollution with asthma outcomes. Am J Resp Crit Care. 2019;200(6):712–20. https://doi.org/10.1164/rccm.201809-1733OC.

    Article  CAS  Google Scholar 

  70. Liebers V, Brüning T, Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol. 2020;94:3629–44. https://doi.org/10.1007/s00204-020-02905-0.

    Article  CAS  PubMed  Google Scholar 

  71. King MD, Lacey RE, Pak H, Fearing A, Ramos G, Baig T, Smith B, Koustova A. Assays and enumeration of bioaerosols-traditional approaches to modern practices. Aerosol Sci Tech. 2020;54(5):611–33. https://doi.org/10.1080/02786826.2020.1723789.

    Article  CAS  Google Scholar 

  72. Ghitarrini S, Pierboni E, Rondini C, Tedeschini E, Tovo GR, Frenguelli G, Albertini E. New biomolecular tools for aerobiological monitoring: Identification of major allergenic Poaceae species through fast real-time PCR. Ecol Evol. 2018;8:3996–4010. https://doi.org/10.1002/ece3.3891.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mohanty RP, Buchheim MA, Levetin E. Molecular approaches for the analysis of airborne pollen: a case study of Juniperus pollen. Ann Allergy, Asthma Immunol. 2017;118(2):204–11. https://doi.org/10.1016/j.anai.2016.11.015.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz IS, McLoud JD, Berman D, Botha A, Lerm B, Colebunders R, Levetin E, Kenyon C. Molecular detection of airborne Emergomyces africanus, a thermally dimorphic fungal pathogen, in Cape Town, South Africa. PLOS Neglect Trop D. 2018;12(1): e0006174.

    Article  Google Scholar 

  75. Lu R, Pørneki AD, Lindgreen JN, Li Y, Madsen AM. Species of fungi and pollen in the PM1 and the inhalable fraction of indoor air in homes. Atmosphere. 2021;12(3):404. https://doi.org/10.3390/atmos12030404.

    Article  Google Scholar 

  76. Campbell BC, Van Haeften S, Massel K, Milic A, Al Kouba J, Addison-Smith B, Gilding EK, Beggs PJ, Davies JM. Metabarcoding airborne pollen from subtropical and temperate eastern Australia over multiple years reveals pollen aerobiome diversity and complexity. Sci Total Environ. 2023;862:160585. https://doi.org/10.1016/j.scitotenv.2022.160585

  77. Calderón-Ezquerro MC, Serrano-Silva N, Brunner-Mendoza C. Aerobiological study of bacterial and fungal community composition in the atmosphere of Mexico City throughout an annual cycle. Environ Pollut. 2021;278:116858. https://doi.org/10.1016/j.envpol.2021.116858

  78. Dannemiller KC, Lang-Yona N, Yamamoto N, Rudich Y, Peccia J. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmos Environ. 2014;84:113–21. https://doi.org/10.1016/j.atmosenv.2013.11.036.

    Article  CAS  Google Scholar 

  79. • Banchi E, Pallavicini A, Muggia L. Relevance of plant and fungal DNA metabarcoding in aerobiology. Aerobiologia. 2020;36:9–23. https://doi.org/10.1007/s10453-019-09574-2. Review of recent studies using DNA barcoding to determine airborne pollen and fungal spores.

    Article  Google Scholar 

  80. •• Buters J, Clot B, Galán C, Gehrig R, Gilge S, Hentges F et al. Automatic detection of airborne pollen: an overview. Aerobiologia. 2022;1–25. https://doi.org/10.1007/s10453-022-09750-xExcellent review of new automated sampling instruments.

  81. Boucher A, Hidalgo PJ, Thonnat M, Belmonte J, Galan C, Bonton P, et al. Development of a semi-automatic system for pollen recognition. Aerobiologia. 2002;18:195–2002. https://doi.org/10.1023/A:1021322813565.

    Article  Google Scholar 

  82. Holt K, Allen G, Hodgson R, Marsland S, Flenley J. Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Rev Palaeobot Palyno. 2011;167:175–83. https://doi.org/10.1016/j.revpalbo.2011.08.006.

    Article  Google Scholar 

  83. France I, Duller AWG, Duller GAT, Lamb H. A new approach to automated pollen analysis. Quaternary Sci Rev. 2000;19:537–46. https://doi.org/10.1016/S0277-3791(99)00021-9.

    Article  Google Scholar 

  84. Mitsumoto K, Yabusaki K, Aoyagi H. Classification of pollen species using autofluorescence image analysis. J Biosci Bioengin. 2009;I:90–4. https://doi.org/10.1016/j.jbiosc.2008.10.001.

    Article  CAS  Google Scholar 

  85. Miki K, Fujita T, Sahashi N. Development and application of a method to classify airborne pollen taxa concentration using light scattering data. Sci Rep. 2021;11:23371. https://doi.org/10.1038/s41598-021-01919-7.

    Article  CAS  Google Scholar 

  86. Šaulienė I, Šukienė L, Daunys G, Valiulis G, Vaitkevičius L, Matavulj P, et al. Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps. Atmos Meas Tech. 2019;12:3435–52. https://doi.org/10.5194/amt-12-3435-2019.

    Article  CAS  Google Scholar 

  87. Crouzy B, Stella M, Konzelmann T, Calpini B, Clot B. All-optical automatic pollen identification: Towards an operational system. Atmos Environ. 2016;140:202–12. https://doi.org/10.1016/j.atmosenv.2016.05.062.

    Article  CAS  Google Scholar 

  88. Oteros J, Pusch G, Weichenmeier I, Heimann U, Möller R, Röseler S, et al. Automatic and online pollen monitoring. Int Arch Allergy Immunol. 2015;167:158–86. https://doi.org/10.1159/000436968.

    Article  PubMed  Google Scholar 

  89. • Tummon F, Adamov S, Clot B, Crouzy B, Gysel-Beer M, Kawashima S, et al. A first evaluation of multiple automatic pollen monitors run in parallel. Aerobiologia Special Issue: Autopollen. 2021. https://doi.org/10.1007/s10453-021-09729. Analysis of air sampling results for total pollen comparing several automated devices and Hirst-type spore traps.

    Article  Google Scholar 

  90. Huffman JA, Perring AE, Savage NJ, Clot B, Crouzy B, Tummon F, et al. Realtime sensing of bioaerosols: review and current perspectives. Aerosol Sci Technol. 2020;54:465–95. https://doi.org/10.1080/02786826.2019.1664724.

    Article  CAS  Google Scholar 

  91. Clot B, Gilge S, Hajkova L, Magyar D, Scheifinger H, Sofiev M, et al. The EUMETNET AutoPollen programme: establishing a prototype automatic pollen monitoring network in Europe. Aerobiologia. 2020;20:1–9. https://doi.org/10.1007/s10453-020-09666-4.

    Article  Google Scholar 

  92. Swanson B, Freeman M, Rezgui S, Alex HJ. Pollen classification using a single particle fluorescence spectroscopy technique. Aerosol Sci Tech. 2022;3:1–22. https://doi.org/10.1080/02786826.2022.2142510.

    Article  CAS  Google Scholar 

  93. •• Maya-Manzano JM, Tummon F, Abt R, Allan N, Bunderson L, Clot B, et al. Towards European automatic bioaerosol monitoring: comparison of 9 automatic pollen observational instruments with classic Hirst-type traps. Sci Total Environ. 2023; 866:161220. https://doi.org/10.1016/j.scitotenv.2022.161220. Analysis of sampling results comparing automated pollen monitors to traditional Hirst-type spore traps.

  94. Miki K, Kawashima S. Estimation of pollen counts from light scattering intensity when sampling multiple pollen taxa–establishment of an automated multi-taxa pollen counting estimation system (AME system). Atmos Meas Tech. 2021;14(1):685–93. https://doi.org/10.5194/amt-14-685-2021.

    Article  Google Scholar 

  95. Savage NJ, Krentz CE, Könemann T, Han TT, Mainelis G, Pöhlker C, et al. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos Meas Tech. 2017;10(11):4279–302. https://doi.org/10.5194/amt-10-4279-2017.

    Article  Google Scholar 

  96. Lancia A, Gioffrè A, Di Rita F, Magri D, D’Ovidio MC. Aerobiological monitoring in an indoor occupational setting using a real-time bioaerosol sampler. Atmosphere. 2023;14(1):118. https://doi.org/10.3390/atmos14010118.

    Article  Google Scholar 

  97. Markey E, Hourihane Clancy J, Martínez-Bracero M, Neeson F, Sarda-Estève R, Baisnée D, et al. A modified spectroscopic approach for the real-time detection of pollen and fungal spores at a semi-urban site using the WIBS-4+. Part I Sensors. 2022;22:8747. https://doi.org/10.3390/s22228747.

    Article  PubMed  Google Scholar 

  98. Stone EA, Mampage CB, Hughes DD, Jones LM. Airborne sub-pollen particles from rupturing giant ragweed pollen. Aerobiologia. 2021;37:625–32. https://doi.org/10.1007/s10453-021-09702-x.

    Article  Google Scholar 

  99. Tešendić D, Boberić Krstićev D, Matavulj P, Brdar S, Panić M, Minić V, et al. RealForAll: real-time system for automatic detection of airborne pollen. Enterprise Information Systems. 2022;16(5):1793391. https://doi.org/10.1080/17517575.2020.1793391.

    Article  Google Scholar 

  100. Matavulj P, Cristofori A, Cristofolini F, Gottardini E, Brdar S, Sikoparija B. Integration of reference data from different Rapid-E devices supports automatic pollen detection in more locations. Sci Total Environ. 2022;851:158234. https://doi.org/10.1016/j.scitotenv.2022.158234.

  101. Sauvageat E, Zeder Y, Auderset K, Calpini B, Clot B, Crouzy B, et al. Real-time pollen monitoring using digital holography. Atmos Meas Tech. 2020;13(3):1539–50. https://doi.org/10.5194/amt-13-1539-2020.

    Article  CAS  Google Scholar 

  102. Erb S, Berne A, Burgdorfer N, Clot B, Graber MJ, Lieberherr G et al. automatic real-time monitoring of fungal spores: the case of Alternaria spp. Aerobiologia. 2023;1–5. https://doi.org/10.1007/s10453-023-09780-z.

  103. Oteros J, Sofiev M, Smith M, Clot B, Damialis A, Prank M, et al. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations. Sci Total Environ. 2019;688:1263–74. https://doi.org/10.1016/j.scitotenv.2019.06.131.

    Article  CAS  PubMed  Google Scholar 

  104. Oteros J, Weber A, Kutzora S, Rojo J, Heinze S, Herr C, Gebauer R, Schmidt-Weber CB, Buters JT. An operational robotic pollen monitoring network based on automatic image recognition. Environ Res. 2020;191:110031. https://doi.org/10.1016/j.envres.2020.110031.

  105. González-Alonso M, Boldeanu M, Koritnik T, Gonçalves J, Belzner L, Stemmler T, et al. Alternaria spore exposure in Bavaria, Germany, measured using artificial intelligence algorithms in a network of BAA500 automatic pollen monitors. Sci Total Environ. 2023;861:160180. https://doi.org/10.1016/j.scitotenv.2022.160180.

  106. Jiang C, Wang W, Du L, Huang G, McConaghy C, Fineman S, et al. Field evaluation of an automated pollen sensor. Int J Environ Res Public Health. 2022;19(11):6444. https://doi.org/10.3390/ijerph19116444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Levetin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levetin, E., McLoud, J.D., Pityn, P. et al. Air Sampling and Analysis of Aeroallergens: Current and Future Approaches. Curr Allergy Asthma Rep 23, 223–236 (2023). https://doi.org/10.1007/s11882-023-01073-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-023-01073-2

Keywords

Navigation