Skip to main content
Log in

Sampling Devices for Indoor Allergen Exposure: Pros and Cons

  • Allergens (R. K. Bush & S. Vieths, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review current indoor allergen sampling devices, including devices to measure allergen in reservoir and airborne dust, and personal sampling devices, with attention to sampling rationale and major indoor allergen size and characteristics.

Recent Findings

While reservoir dust vacuuming samples and airborne dust volumetric air sampling remain popular techniques, recent literature describes sampling using furnace filters and ion-charging devices, both which help to eliminate the need for trained staff; however, variable correlation with reservoir dust and volumetric air sampling has been described. Personal sampling devices include intra-nasal samples and personal volumetric air samples. While these devices may offer better estimates of breathable allergens, they are worn for short periods of time and can be cumbersome.

Summary

Reservoir dust sampling is inexpensive and is possible for families to perform. Airborne dust sampling can be more expensive and may better quantify cat, dog, and mouse allergen exposure. Personal sampling devices may offer a better representation of breathable air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Torjusen EN, Diette GB, Breysse PN, Curtin-Brosnan J, Aloe C, Matsui EC. Dose-response relationships between mouse allergen exposure and asthma morbidity among urban children and adolescents. Indoor Air. 2013;23(4):268–74.

    Article  CAS  Google Scholar 

  2. Rosenstreich D, Eggleston P, Kattan M. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. NEJM. 1997;336(19).

  3. Matsui EC, Buckley TJ, Krishnan JA, Breysse PN, Rand CS, Diette GB. Household mouse allergen exposure and asthma morbidity in inner-city preschool children. Ann Allergy Asthma Immunol. 2006;97(4):514–20.

    Article  Google Scholar 

  4. Lin S, Jones R, Munsie JP, Nayak SG, Fitzgerald EF, Hwang SA. Childhood asthma and indoor allergen exposure and sensitization in Buffalo, New York. Int J Hyg Environ Health. 2012;215(3):297–305.

    Article  CAS  Google Scholar 

  5. Platts-Mills TA, Vervloet D, Thomas WR, Aalberse RC, Chapman MD. Indoor allergens and asthma: report of the third international workshop. J Allergy Clin Immunol. 1997;100(6 Pt 1):S2–24.

    Article  CAS  Google Scholar 

  6. Wang Y, Xiong L, Yin X, Wang J, Zhang Q, Yu Z, et al. House dust mite allergen levels in households and correlation with allergic rhinitis symptoms. Am J Rhinol Allergy. 2014;28(5):193–6.

    Article  Google Scholar 

  7. Shargorodsky J, Garcia-Esquinas E, Umanskiy R, Navas-Acien A, Lin SY. Household pet exposure, allergic sensitization, and rhinitis in the U.S. population. Int Forum Allergy Rhinol. 2017;7(7):645–51.

    Article  Google Scholar 

  8. Grant T, Aloe C, Perzanowski M, Phipatanakul W, Bollinger ME, Miller R, et al. Mouse sensitization and exposure are associated with asthma severity in urban children. J Allergy Clin Immunol Pract. 2017;5(4):1008–14.

    Article  Google Scholar 

  9. Morgan WJ, Crain EF, Gruchalla RS, O'Connor GT, Kattan M, Evans R 3rd, et al. Results of a home-based environmental intervention among urban children with asthma. N Engl J Med. 2004;351(11):1068–80.

    Article  CAS  Google Scholar 

  10. Matsui EC, Perzanowski M, Peng RD, Wise RA, Balcer-Whaley S, Newman M, et al. Effect of an integrated pest management intervention on asthma symptoms among mouse-sensitized children and adolescents with asthma: a randomized clinical trial. JAMA. 2017;317(10):1027–36.

    Article  Google Scholar 

  11. Expert Panel Report 3 (EPR-3): guidelines for the diagnosis and management of asthma—summary report 2007. J Allergy Clin Immuno. 2007;120(5 Suppl):S94–138.

  12. Portnoy J, Miller JD, Williams PB, Chew GL, Miller JD, Zaitoun F, et al. Environmental assessment and exposure control of dust mites: a practice parameter. Ann Allergy Asthma Immunol. 2013;111(6):465–507.

    Article  Google Scholar 

  13. Portnoy J, Chew GL, Phipatanakul W, Williams PB, Grimes C, Kennedy K, et al. Environmental assessment and exposure reduction of cockroaches: a practice parameter. J Allergy Clin Immunol. 2013;132(4):802–8.e1–25.

    Article  Google Scholar 

  14. Phipatanakul W, Matsui E, Portnoy J, Williams PB, Barnes C, Kennedy K, et al. Environmental assessment and exposure reduction of rodents: a practice parameter. Ann Allergy Asthma Immunol. 2012;109(6):375–87.

    Article  Google Scholar 

  15. Tschudy MM, Sharfstein J, Matsui E, Barnes CS, Chacker S, Codina R, et al. Something new in the air: paying for community-based environmental approaches to asthma prevention and control. J Allergy Clin Immunol. 2017;140(5):1244–9.

    Article  Google Scholar 

  16. Karvala K, Nordman H, Luukkonen R, Nykyri E, Lappalainen S, Hannu T, et al. Occupational rhinitis in damp and moldy workplaces. Am J Rhinol. 2008;22(5):457–62.

    Article  Google Scholar 

  17. Friedman-Jimenez G, Harrison D, Luo H. Occupational asthma and work-exacerbated asthma. Semin Respir Crit Care Med. 2015;36(3):388–407.

    Article  Google Scholar 

  18. O'Connor GT, Lynch SV, Bloomberg GR, Kattan M, Wood RA, Gergen PJ, et al. Early-life home environment and risk of asthma among inner-city children. J Allergy Clin Immunol. 2018;141(4):1468–75.

    Article  Google Scholar 

  19. Lanphear BP, Kahn RS, Berger O, Auinger P, Bortnick SM, Nahhas RW. Contribution of residential exposures to asthma in us children and adolescents. Pediatrics. 2001;107(6):E98.

    Article  CAS  Google Scholar 

  20. Gold DR, Adamkiewicz G, Arshad SH, Celedón JC, Chapman MD, Chew GL, et al. NIAID, NIEHS, NHLBI, and MCAN workshop report: the indoor environment and childhood asthma-implications for home environmental intervention in asthma prevention and management. J Allergy Clin Immunol. 2017;140(4):933–49.

    Article  Google Scholar 

  21. Posa D, Hofmaier S, Arasi S, Matricardi PM. Natural evolution of IgE responses to mite allergens and relationship to progression of allergic disease: a review. Curr Allergy Asthma Rep. 2017;17(5):28.

    Article  Google Scholar 

  22. Wang JY. The innate immune response in house dust mite-induced allergic inflammation. Allergy Asthma Immunol Res. 2013;5(2):68–74.

    Article  CAS  Google Scholar 

  23. Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, et al. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy. 2017;47(4):442–56.

    Article  Google Scholar 

  24. Platts-Mills TAE, Schuyler AJ, Erwin EA, Commins SP, Woodfolk JA. IgE in the diagnosis and treatment of allergic disease. J Allergy Clin Immunol. 2016;137(6):1662–70.

    Article  CAS  Google Scholar 

  25. • Hamilton RG. Assessment of indoor allergen exposure. Curr Allergy Asthma Rep. 2005;5(5):394–401 Detailed review of indoor allergen assessement.

    Article  CAS  Google Scholar 

  26. American Pet Products Association 2017-2018 National Pet Owners Survey. Available from: https://americanpetproducts.org/Uploads/MemServices/GPE2017_NPOS_Seminar.pdf. Accessed 6 Aug 2018.

  27. •• Ahluwalia SK, Matsui EC. Indoor environmental interventions for furry pet allergens, pest allergens, and mold: looking to the future. J Allergy Clin Immunol Pract. 2018;6(1):9–19 Detailed review of indoor allergen environmental control measures.

    Article  Google Scholar 

  28. Custovic A, Simpson A, Pahdi H, Green RM, Chapman MD, Woodcock A. Distribution, aerodynamic characteristics, and removal of the major cat allergen Fel d 1 in British homes. Thorax. 1998;53(1):33–8.

    Article  CAS  Google Scholar 

  29. Abramson SL, Turner-Henson A, Anderson L, Hemstreet MP, Bartholomew LK, Joseph CL, et al. Allergens in school settings: results of environmental assessments in 3 city school systems. J Sch Health. 2006;76(6):246–9.

    Article  Google Scholar 

  30. Sander I, Lotz A, Neumann HD, Czibor C, Flagge A, Zahradnik E, et al. Indoor allergen levels in settled airborne dust are higher in day-care centers than at home. Allergy. 2018;73(6):1263–75.

    Article  CAS  Google Scholar 

  31. Martin IR, Wickens K, Patchett K, Kent R, Fitzharris P, Siebers R, et al. Cat allergen levels in public places in New Zealand. N Z Med J. 1998;111(1074):356–8.

    CAS  PubMed  Google Scholar 

  32. De Lucca SD, O'meara TJ, Tovey ER. Exposure to mite and cat allergens on a range of clothing items at home and the transfer of cat allergen in the workplace. J Allergy Clin Immunol. 2000;106(5):874–9.

    Article  Google Scholar 

  33. Perfetti L, Ferrari M, Galdi E, Pozzi V, Cottica D, Grignani E, et al. House dust mites (Der p 1, Der f 1), cat (Fel d 1) and cockroach (Bla g 2) allergens in indoor work-places (offices and archives). Sci Total Environ. 2004;328(1–3):15–21.

    Article  CAS  Google Scholar 

  34. Custovic A, Green R, Fletcher A, Smith A, Pickering CA, Chapman MD, et al. Aerodynamic properties of the major dog allergen Can f 1: distribution in homes, concentration, and particle size of allergen in the air. Am J Respir Crit Care Med. 1997;155(1):94–8.

    Article  CAS  Google Scholar 

  35. Salo PM, Sever ML, Zeldin DC. Indoor allergens in school and day care environments. J Allergy Clin Immunol. 2009;124(2):185–92 192.

    Article  Google Scholar 

  36. Carrer P, Maroni M, Alcini D, Cavallo D. Allergens in indoor air: environmental assessment and health effects. Sci Total Environ. 2001;270(1–3):33–42.

    Article  CAS  Google Scholar 

  37. Miller JD. The role of dust mites in allergy. Clin Rev Allergy Immunol. 2018.

  38. Vyszenski-Moher DL, Arlian LG, Bernstein IL, Gallagher JS. Prevalence of house dust mites in nursing homes in Southwest Ohio. J Allergy Clin Immunol. 1986;77(5):745–8.

    Article  CAS  Google Scholar 

  39. De Lucca SD, Taylor DJ, O'Meara TJ, Jones AS, Tovey ER. Measurement and characterization of cockroach allergens detected during normal domestic activity. J Allergy Clin Immunol. 1999;104(3 Pt 1):672–80.

    Article  Google Scholar 

  40. Matsui EC, Simons E, Rand C, Butz A, Buckley TJ, Breysse P, et al. Airborne mouse allergen in the homes of inner-city children with asthma. J Allergy Clin Immunol. 2005;115(2):358–63.

    Article  CAS  Google Scholar 

  41. Perry TT, Vargas PA, Bufford J, Feild C, Flick M, Simpson PM, et al. Classroom aeroallergen exposure in Arkansas head start centers. Ann Allergy Asthma Immunol. 2008;100:358–63.

    Article  Google Scholar 

  42. Simons E, Curtin-Brosnan J, Buckley T, Breysse P, Eggleston PA. Indoor environmental differences between inner city and suburban homes of children with asthma. J Urban Health. 2007;84(4):577–90.

    Article  Google Scholar 

  43. Sandoval-Denis M, Sutton DA, Martin-Vicente A, Cano-Lira JF, Wiederhold N, Guarro J, et al. Cladosporium species recovered from clinical samples in the United States. J Clin Microbiol. 2015;53(9):2990–3000.

    Article  CAS  Google Scholar 

  44. Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol. 2018;142(2):353–63.

    Article  CAS  Google Scholar 

  45. Cox J, Indugula R, Vesper S, Zhu Z, Jandarov R, Reponen T. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR. Environ Sci Process Impacts. 2017;19(10):1312–9.

    Article  CAS  Google Scholar 

  46. Barnes CS, Horner WE, Kennedy K, Grimes C, Miller JD. Environmental Allergens Workgroup. Home assessment and remediation. J Allergy Clin Immunol Pract. 2016;4(3):423–431.e15.

    Article  Google Scholar 

  47. • Tovey ER, Mitakakis TZ, Sercombe JK, Vanlaar CH, Marks GB. Four methods of sampling for dust mite allergen: differences in ‘dust’. Allergy. 2003;58(8):790–4 Comparison of reservoir and airborne dust methods.

    Article  CAS  Google Scholar 

  48. Platts-Mills TA, Thomas WR, Aalberse RC, Vervloet D, Champman MD. Dust mite allergens and asthma: report of a second international workshop. J Allergy Clin Immunol. 1992;89(5):1046–60.

    Article  CAS  Google Scholar 

  49. Peterson EL, Ownby DR, Kallenbach L, Johnson CC. Evaluation of air and dust sampling schemes for Fel d 1, Der f 1, and Der p 1 allergens in homes in the Detroit area. J Allergy Clin Immunol. 1999;104(2 Pt 1):348–55.

    Article  CAS  Google Scholar 

  50. Breysse PN, Buckley TJ, Williams D, Beck CM, Jo SJ, Merriman B, et al. Indoor exposures to air pollutants and allergens in the homes of asthmatic children in inner-city Baltimore. Environ Res. 2005;98(2):167–76.

    Article  CAS  Google Scholar 

  51. Sandel M, Murphy JS, Dixon SL, Adgate JL, Chew GL, Dorevitch S, et al. A side-by-side comparison of three allergen sampling methods in settled house dust. J Expo Sci Environ Epidemiol. 2014;24(6):650–6.

    Article  CAS  Google Scholar 

  52. • Arbes SJ Jr, Sever M, Vaughn B, Mehta J, Lynch JT, Mitchell H, et al. Feasibility of using subject-collected dust samples in epidemiologic and clinical studies of indoor allergens. Environ Health Perspect. 2005;113(6):665–9 Comparison of participants vs technician collected samples.

    Article  CAS  Google Scholar 

  53. • Barnes C, Portnoy JM, Ciaccio CE, Pacheco F. A comparison of subject room dust with home vacuum dust for evaluation of dust-borne aeroallergens. Ann Allergy Asthma Immunol. 2013;110(5):375–9 Comparison of grab vacuum vs technician samples.

    Article  Google Scholar 

  54. Custovic A, Simpson B, Simpson A, Hallam C, Craven M, Woodcock A. Relationship between mite, cat, and dog allergens in reservoir dust and ambient air. Allergy. 1999;54(6):612–6.

    Article  CAS  Google Scholar 

  55. Kilburg-Basnyat B, Metwali N, Thorne PS. Effect of deployment time on endotoxin and allergen exposure assessment using electrostatic dust collectors. Ann Occup Hyg. 2015;59(1):104–15.

    CAS  PubMed  Google Scholar 

  56. American Industrial Hygiene Association Sampling and Sizing of Airborne Particles. Available from: https://www.aiha.org/Communities/TheOccupationalEnvironment4thedition/SharedDocuments/Chapter14/Chapter14FINAL.docx. Accessed 8 Aug 2018.

  57. United States Environmental Protection Agency Particulate Matter Basics. Available from: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics. Accessed 8 Aug 2018.

  58. •• Barnes CS, Allenbrand R, Mohammed M, Gard L, Pacheco F, Kennedy K, et al. Measurement of aeroallergens from furnace filters. Ann Allergy Asthma Immunol. 2015;114(3):221–5 Study evaluating sampling from furnace filters.

    Article  CAS  Google Scholar 

  59. Maestre JP, Jennings W, Wylie D, Horner SD, Siegel J, Kinney K. Filter forensics: microbiota recovery from residential HVAC filters. Microbiome. 2018;6(1):22.

    Article  Google Scholar 

  60. •• Allenbrand R, Barnes CS, Mohammed M, Gard L, Pacheco F, Kennedy K, et al. Comparison of allergens collected from furnace filters and vacuum floor dust. Ann Allergy Asthma Immunol. 2017;118(1):108–9 Comparison of furnace filter vs reservoir dust samples.

    Article  Google Scholar 

  61. Custis NJ, Woodfolk JA, Vaughan JW, Platts-Mills TA. Quantitative measurement of airborne allergens from dust mites, dogs, and cats using an ion-charging device. Clin Exp Allergy. 2003;33(7):986–91.

    Article  CAS  Google Scholar 

  62. •• Gordon J, Reboulet R, Gandhi P, Matsui E. Validation of a novel sampling technology for airborne allergens in low-income urban homes. Ann Allergy Asthma Immunol. 2018;120(1):96–97.e1 Study of ICD use in urban homes.

    Article  Google Scholar 

  63. •• Afshar-Mohajer N, Godfrey W, Rule A, Matsui E, Gordon J, Koehler K. A low-cost device for bulk sampling of airborne particulate matter: evaluation of an ionic charging device. Aerosol Air Qual Res. 2017;17:1452–62 Study of ICDs vs personal sampling devices.

    Article  Google Scholar 

  64. • Graham JA, Pavlicek PK, Sercombe JK, Xavier ML, Tovey ER. The nasal air sampler: a device for sampling inhaled aeroallergens. Ann Allergy Asthma Immunol. 2000;84(6):599–604 Description of NAS.

    Article  CAS  Google Scholar 

  65. •• Tovey ER, Liu-Brennan D, Garden FL, Oliver BG, Perzanowski MS, Marks GB. Time-based measurement of personal mite allergen bioaerosol exposure over 24 hour periods. PLoS One. 2016;11(5):e0153414 Description of time-resolved personal sampling devices.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Matsui.

Ethics declarations

Conflict of Interest

Dr. Matsui reports grants from Inspirotec outside the submitted work. Dr. Wood reports grants from NIAID, DBV, Astellas, Aimmune, Sanofi, Regeneron, and personal fees from Up to Date and AAAAI, outside the submitted work. The other authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Allergens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, T., Rule, A.M., Koehler, K. et al. Sampling Devices for Indoor Allergen Exposure: Pros and Cons. Curr Allergy Asthma Rep 19, 9 (2019). https://doi.org/10.1007/s11882-019-0833-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-019-0833-y

Keywords

Navigation