Skip to main content

Advertisement

Log in

Component Resolved Diagnosis in Hymenoptera Anaphylaxis

  • Anaphylaxis and Drug Allergy (DA Khan and M Castells, Section Editors)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hymenoptera anaphylaxis is one of the leading causes of severe allergic reactions and can be fatal. Venom-specific immunotherapy (VIT) can prevent a life-threatening reaction; however, confirmation of an allergy to a Hymenoptera venom is a prerequisite before starting such a treatment. Component resolved diagnostics (CRD) have helped to better identify the responsible allergen.

Recent Findings

Many new insect venom allergens have been identified within the last few years. Commercially available recombinant allergens offer new diagnostic tools for detecting sensitivity to insect venoms. Additional added sensitivity to nearly 95% was introduced by spiking yellow jacket venom (YJV) extract with Ves v 5. The further value of CRD for sensitivity in YJV and honey bee venom (HBV) allergy is more controversially discussed. Recombinant allergens devoid of cross-reactive carbohydrate determinants often help to identify the culprit venom in patients with double sensitivity to YJV and HBV. CRD identified a group of patients with predominant Api m 10 sensitization, which may be less well protected by VIT, as some treatment extracts are lacking this allergen.

Summary

The diagnostic gap of previously undetected Hymenoptera allergy has been decreased via production of recombinant allergens. Knowledge of analogies in interspecies proteins and cross-reactive carbohydrate determinants is necessary to distinguish relevant from irrelevant sensitizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Worm M, Eckermann O, Dolle S, Aberer W, Beyer K, Hawranek T, et al. Triggers and treatment of anaphylaxis: an analysis of 4,000 cases from Germany. Austria and Switzerland Dtsch Arztebl Int. 2014;111:367–75. doi:10.3238/arztebl.2014.0367.

    PubMed  Google Scholar 

  2. Worm M, Moneret-Vautrin A, Scherer K, Lang R, Fernandez-Rivas M, Cardona V, et al. First European data from the network of severe allergic reactions (NORA). Allergy. 2014;69:1397–404. doi:10.1111/all.12475.

    Article  CAS  PubMed  Google Scholar 

  3. Mosbech H, Tang L, Linneberg A. Insect sting reactions and specific IgE to venom and major allergens in a general population. Int Arch Allergy Immunol. 2016;170:194–200. doi:10.1159/000448399.

    Article  CAS  PubMed  Google Scholar 

  4. Golden DB, Marsh DG, Kagey-Sobotka A, Freidhoff L, Szklo M, Valentine MD, Lichtenstein LM. Epidemiology of insect venom sensitivity. JAMA. 1989;262:240–4.

    Article  CAS  PubMed  Google Scholar 

  5. • Sturm GJ, Kranzelbinder B, Schuster C, Sturm EM, Bokanovic D, Vollmann J, et al. Sensitization to Hymenoptera venoms is common, but systemic sting reactions are rare. J Allergy Clin Immunol. 2014;133:1635–43.e1. doi:10.1016/j.jaci.2013.10.046. This study shows that only a small amount of patients with hymenoptera venom sensitization shows systemic symptoms after a sting challenge.

    Article  CAS  PubMed  Google Scholar 

  6. Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-Elberink JNG. Diagnosis of Hymenoptera venom allergy. Allergy. 2005;60:1339–49. doi:10.1111/j.1398-9995.2005.00963.x.

    Article  CAS  PubMed  Google Scholar 

  7. Golden DBK. Anaphylaxis to insect stings. Immunol Allergy Clin N Am. 2015;35:287–302. doi:10.1016/j.iac.2015.01.007.

    Article  Google Scholar 

  8. Bonadonna P, Bonifacio M, Lombardo C, Zanotti R. Hymenoptera anaphylaxis and C-kit mutations: an unexpected association. Curr Allergy Asthma Rep. 2015;15:49. doi:10.1007/s11882-015-0550-0.

    Article  PubMed  Google Scholar 

  9. Schuch A, Brockow K. Mastocytosis and anaphylaxis. Immunol Allergy Clin N Am. 2017;37:153–64. doi:10.1016/j.iac.2016.08.017.

    Article  Google Scholar 

  10. Brockow K, Jofer C, Behrendt H, Ring J. Anaphylaxis in patients with mastocytosis: a study on history, clinical features and risk factors in 120 patients. Allergy. 2008;63:226–32. doi:10.1111/j.1398-9995.2007.01569.x.

    Article  CAS  PubMed  Google Scholar 

  11. Bonadonna P, Bonifacio M, Lombardo C, Zanotti R. Hymenoptera allergy and mast cell activation syndromes. Curr Allergy Asthma Rep. 2016;16:5. doi:10.1007/s11882-015-0582-5.

    Article  PubMed  Google Scholar 

  12. Moscato G, Pala G, Crivellaro M, Siracusa A. Anaphylaxis as occupational risk. Curr Opin Allergy Clin Immunol. 2014;14:328–33. doi:10.1097/ACI.0000000000000066.

    Article  PubMed  Google Scholar 

  13. Siracusa A, Folletti I, van Gerth WR, Jeebhay MF, Moscato G, Quirce S, et al. Occupational anaphylaxis—an EAACI task force consensus statement. Allergy. 2015;70:141–52. doi:10.1111/all.12541.

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez J. Distribution of vespid species in Europe. Curr Opin Allergy Clin Immunol. 2004;4:319–24.

    Article  PubMed  Google Scholar 

  15. Brown SGA, van Eeden P, Wiese MD, Mullins RJ, Solley GO, Puy R, et al. Causes of ant sting anaphylaxis in Australia: the Australian Ant Venom Allergy Study. Med J Aust. 2011;195:69–73.

    Article  PubMed  Google Scholar 

  16. Caplan EL, Ford JL, Young PF, Ownby DR. Fire ants represent an important risk for anaphylaxis among residents of an endemic region. J Allergy Clin Immunol. 2003;111:1274–7.

    Article  PubMed  Google Scholar 

  17. Munoz-Cano R, Picado C, Valero A, Bartra J. Mechanisms of anaphylaxis beyond IgE. J Investig Allergol Clin Immunol. 2016;26:73–82; quiz 2p following 83. doi:10.18176/jiaci.0046.

    Article  CAS  PubMed  Google Scholar 

  18. Nassiri M, Babina M, Dolle S, Edenharter G, Rueff F, Worm M. Ramipril and metoprolol intake aggravate human and murine anaphylaxis: evidence for direct mast cell priming. J Allergy Clin Immunol. 2015;135:491–9. doi:10.1016/j.jaci.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  19. Wolbing F, Fischer J, Koberle M, Kaesler S, Biedermann T. About the role and underlying mechanisms of cofactors in anaphylaxis. Allergy. 2013;68:1085–92. doi:10.1111/all.12193.

    Article  CAS  PubMed  Google Scholar 

  20. Kosnik M, Korosec P. Venom immunotherapy: clinical efficacy, safety and contraindications. Expert Rev Clin Immunol. 2015;11:877–84. doi:10.1586/1744666X.2015.1052409.

    Article  CAS  PubMed  Google Scholar 

  21. • Dhami S, Zaman H, Varga E-M, Sturm GJ, Muraro A, Akdis CA, et al. Allergen immunotherapy for insect venom allergy: a systematic review and meta-analysis. Allergy. 2017;72:342–65. doi:10.1111/all.13077. This review indicates that venom immunotherapy reduces the risk of subsequent severe systemic sting reactions.

    Article  CAS  PubMed  Google Scholar 

  22. Baker TW, Forester JP, Johnson ML, Stolfi A, Stahl MC. The HIT study: hymenoptera identification test—how accurate are people at identifying stinging insects? Ann Allergy Asthma Immunol. 2014;113:267–70. doi:10.1016/j.anai.2014.05.029.

    Article  PubMed  Google Scholar 

  23. Baker TW, Forester JP, Johnson ML, Sikora JM, Stolfi A, Stahl MC. Stinging insect identification: are the allergy specialists any better than their patients? Ann Allergy Asthma Immunol. 2016;116:431–4. doi:10.1016/j.anai.2016.01.025.

    Article  PubMed  Google Scholar 

  24. Franken HH, Dubois AE, Kauffman HF, de Monchy JG. Hymenoptera sting challenge tests. Lancet. 1991;338:1344.

    Article  CAS  PubMed  Google Scholar 

  25. Rueff F, Przybilla B. Stichprovokation: Indikation und Durchfuhrung. Hautarzt. 2014;65:796–801. doi:10.1007/s00105-014-2779-2.

    Article  CAS  PubMed  Google Scholar 

  26. van der Linden PW, Hack CE, Struyvenberg A, van der Zwan JK. Insect-sting challenge in 324 subjects with a previous anaphylactic reaction: current criteria for insect-venom hypersensitivity do not predict the occurrence and the severity of anaphylaxis. J Allergy Clin Immunol. 1994;94:151–9.

    Article  PubMed  Google Scholar 

  27. Straumann F, Bucher C, Wuthrich B. Double sensitization to honeybee and wasp venom: immunotherapy with one or with both venoms? Value of FEIA inhibition for the identification of the cross-reacting ige antibodies in double-sensitized patients to honeybee and wasp venom. Int Arch Allergy Immunol. 2000;123:268–74.

    Article  CAS  PubMed  Google Scholar 

  28. Korosec P, Silar M, Erzen R, Celesnik N, Bajrovic N, Zidarn M, Kosnik M. Clinical routine utility of basophil activation testing for diagnosis of hymenoptera-allergic patients with emphasis on individuals with negative venom-specific IgE antibodies. Int Arch Allergy Immunol. 2013;161:363–8. doi:10.1159/000348500.

    Article  CAS  PubMed  Google Scholar 

  29. Eberlein B, Krischan L, Darsow U, Ollert M, Ring J. Double positivity to bee and wasp venom: improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. J Allergy Clin Immunol. 2012;130:155–61. doi:10.1016/j.jaci.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  30. van Vaerenbergh M, Debyser G, Devreese B, de Graaf DC. Exploring the hidden honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide ligand library approach with FTMS. J Proteome. 2014;99:169–78. doi:10.1016/j.jprot.2013.04.039.

    Article  Google Scholar 

  31. Jakob T, Kohler J, Blank S, Magnusson U, Huss-Marp J, Spillner E, Lidholm J. Comparable IgE reactivity to natural and recombinant Api m 1 in cross-reactive carbohydrate determinant-negative patients with bee venom allergy. J Allergy Clin Immunol. 2012;130:276–278; author reply 278-9. doi:10.1016/j.jaci.2012.03.048.

    Article  CAS  PubMed  Google Scholar 

  32. Soldatova LN, Tsai C, Dobrovolskaia E, Markovic-Housley Z, Slater JE. Characterization of the N-glycans of recombinant bee venom hyaluronidase (Api m 2) expressed in insect cells. Allergy Asthma Proc. 2007;28:210–5.

    Article  CAS  PubMed  Google Scholar 

  33. Grunwald T, Bockisch B, Spillner E, Ring J, Bredehorst R, Ollert MW. Molecular cloning and expression in insect cells of honeybee venom allergen acid phosphatase (Api m 3). J Allergy Clin Immunol. 2006;117:848–54. doi:10.1016/j.jaci.2005.12.1331.

    Article  CAS  PubMed  Google Scholar 

  34. Blank S, Seismann H, Bockisch B, Braren I, Cifuentes L, McIntyre M, et al. Identification, recombinant expression, and characterization of the 100 kDa high molecular weight Hymenoptera venom allergens Api m 5 and Ves v 3. J Immunol. 2010;184:5403–13. doi:10.4049/jimmunol.0803709.

    Article  CAS  PubMed  Google Scholar 

  35. van Vaerenbergh M, de Smet L, Rafei-Shamsabadi D, Blank S, Spillner E, Ebo DG, et al. IgE recognition of chimeric isoforms of the honeybee (Apis mellifera) venom allergen Api m 10 evaluated by protein array technology. Mol Immunol. 2015;63:449–55. doi:10.1016/j.molimm.2014.09.018.

    Article  PubMed  Google Scholar 

  36. •• Kohler J, Blank S, Muller S, Bantleon F, Frick M, Huss-Marp J, et al. Component resolution reveals additional major allergens in patients with honeybee venom allergy. J Allergy Clin Immunol. 2014;133:1383–9. doi:10.1016/j.jaci.2013.10.060. 1389.e1-6. This study shows that sensitivity of diagnosis of HBV-allergy has been improved with component resolved diagnosis up to 94% using new recombinant allergens.

    Article  CAS  PubMed  Google Scholar 

  37. King TP, Lu G, Agosto H. Antibody responses to bee melittin (Api m 4) and hornet antigen 5 (Dol m 5) in mice treated with the dominant T-cell epitope peptides. J Allergy Clin Immunol. 1998;101:397–403. doi:10.1016/S0091-6749(98)70254-4.

    Article  CAS  PubMed  Google Scholar 

  38. Kettner A, Hughes GJ, Frutiger S, Astori M, Roggero M, Spertini F, Corradin G. Api m 6: a new bee venom allergen. J Allergy Clin Immunol. 2001;107:914–20. doi:10.1067/mai.2001.113867.

    Article  CAS  PubMed  Google Scholar 

  39. Georgieva D, Greunke K, Betzel C. Three-dimensional model of the honeybee venom allergen Api m 7: structural and functional insights. Mol BioSyst. 2010;6:1056–60. doi:10.1039/b923127g.

    Article  CAS  PubMed  Google Scholar 

  40. Elieh Ali Komi D, Shafaghat F, Zwiener RD. Immunology of bee venom. Clin Rev Allergy Immunol. 2017; doi:10.1007/s12016-017-8597-4.

    Google Scholar 

  41. Ollert M, Blank S. Anaphylaxis to insect venom allergens: role of molecular diagnostics. Curr Allergy Asthma Rep. 2015;15:26. doi:10.1007/s11882-015-0527-z.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Blank S, Bantleon FI, McIntyre M, Ollert M, Spillner E. The major royal jelly proteins 8 and 9 (Api m 11) are glycosylated components of Apis mellifera venom with allergenic potential beyond carbohydrate-based reactivity. Clin Exp Allergy. 2012;42:976–85. doi:10.1111/j.1365-2222.2012.03966.x.

    Article  CAS  PubMed  Google Scholar 

  43. • Blank S, Seismann H, McIntyre M, Ollert M, Wolf S, Bantleon FI, Spillner E. Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula vulgaris venom. PLoS One. 2013;8:e62009. doi:10.1371/journal.pone.0062009. This paper describes a new identified cross-reactive allergen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jin C, Focke M, Leonard R, Jarisch R, Altmann F, Hemmer W. Reassessing the role of hyaluronidase in yellow jacket venom allergy. J Allergy Clin Immunol. 2010;125:184–90.e1. doi:10.1016/j.jaci.2009.08.037.

    Article  CAS  PubMed  Google Scholar 

  45. • Frick M, Muller S, Bantleon F, Huss-Marp J, Lidholm J, Spillner E, Jakob T. rApi m 3 and rApi m 10 improve detection of honey bee sensitization in Hymenoptera venom-allergic patients with double sensitization to honey bee and yellow jacket venom. Allergy. 2015;70:1665–8. doi:10.1111/all.12725. This study points out the additional value of rApi m3 and rApi m 10 in diagnosing genuine HBV-allergic patients with double sensitizations to HBV and YJV.

    Article  CAS  PubMed  Google Scholar 

  46. van Vaerenbergh M, Debyser G, Smagghe G, Devreese B, de Graaf DC. Unraveling the venom proteome of the bumblebee (Bombus terrestris) by integrating a combinatorial peptide ligand library approach with FT-ICR MS. Toxicon. 2015;102:81–8. doi:10.1016/j.toxicon.2013.10.002.

    Article  PubMed  Google Scholar 

  47. Hoffman DR, El-Choufani SE, Smith MM, de Groot H. Occupational allergy to bumblebees: allergens of Bombus terrestris. J Allergy Clin Immunol. 2001;108:855–60. doi:10.1067/mai.2001.119029.

    Article  CAS  PubMed  Google Scholar 

  48. Seismann H, Blank S, Cifuentes L, Braren I, Bredehorst R, Grunwald T, et al. Recombinant phospholipase A1 (Ves v 1) from yellow jacket venom for improved diagnosis of hymenoptera venom hypersensitivity. Clin Mol Allergy. 2010;8:7. doi:10.1186/1476-7961-8-7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Henriksen A, King TP, Mirza O, Monsalve RI, Meno K, Ipsen H, et al. Major venom allergen of yellow jackets, Ves v 5: structural characterization of a pathogenesis-related protein superfamily. Proteins. 2001;45:438–48.

    Article  CAS  PubMed  Google Scholar 

  50. Ebo DG, Faber M, Sabato V, Leysen J, Bridts CH, de Clerck LS. Component-resolved diagnosis of wasp (yellow jacket) venom allergy. Clin Exp Allergy. 2013;43:255–61. doi:10.1111/cea.12057.

    Article  CAS  PubMed  Google Scholar 

  51. Seppala U, Selby D, Monsalve R, King TP, Ebner C, Roepstorff P, Bohle B. Structural and immunological characterization of the N-glycans from the major yellow jacket allergen Ves v 2: the N-glycan structures are needed for the human antibody recognition. Mol Immunol. 2009;46:2014–21. doi:10.1016/j.molimm.2009.03.005.

    Article  PubMed  Google Scholar 

  52. Skov LK, Seppala U, Coen JJF, Crickmore N, King TP, Monsalve R, et al. Structure of recombinant Ves v 2 at 2.0 Angstrom resolution: structural analysis of an allergenic hyaluronidase from wasp venom. Acta Crystallogr D Biol Crystallogr. 2006;62:595–604. doi:10.1107/S0907444906010687.

    Article  PubMed  Google Scholar 

  53. Severino MG, Caruso B, Bonadonna P, Labardi D, Macchia D, Campi P, Passalacqua G. Cross reactivity between European hornet and yellow jacket venoms. Eur Ann Allergy Clin Immunol. 2010;42:141–5.

    CAS  PubMed  Google Scholar 

  54. Monsalve RI, Vega A, Marques L, Miranda A, Fernandez J, Soriano V, et al. Component-resolved diagnosis of vespid venom-allergic individuals: phospholipases and antigen 5s are necessary to identify Vespula or Polistes sensitization. Allergy. 2012;67:528–36. doi:10.1111/j.1398-9995.2011.02781.x.

    Article  CAS  PubMed  Google Scholar 

  55. Schiener M, Eberlein B, Moreno-Aguilar C, Pietsch G, Serrano P, McIntyre M, et al. Application of recombinant antigen 5 allergens from seven allergy-relevant Hymenoptera species in diagnostics. Allergy. 2017;72:98–108. doi:10.1111/all.13000.

    Article  CAS  PubMed  Google Scholar 

  56. Perez-Riverol A, Justo-Jacomini DL. Zollner RdL, Brochetto-Braga MR. Facing Hymenoptera venom allergy: from natural to recombinant allergens. Toxins (Basel). 2015;7:2551–70. doi:10.3390/toxins7072551.

    Article  CAS  Google Scholar 

  57. Spillner E, Blank S, Jakob T. Hymenoptera allergens: from venom to “venome”. Front Immunol. 2014;5:77. doi:10.3389/fimmu.2014.00077.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Seismann H, Blank S, Braren I, Greunke K, Cifuentes L, Grunwald T, et al. Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol. 2010;47:799–808. doi:10.1016/j.molimm.2009.10.005.

    Article  CAS  PubMed  Google Scholar 

  59. Hofmann SC, Pfender N, Weckesser S, Huss-Marp J, Jakob T. Added value of IgE detection to rApi m 1 and rVes v 5 in patients with Hymenoptera venom allergy. J Allergy Clin Immunol. 2011;127:265–7. doi:10.1016/j.jaci.2010.06.042.

    Article  CAS  PubMed  Google Scholar 

  60. Sturm GJ, Hemmer W, Hawranek T, Lang R, Ollert M, Spillner E, et al. Detection of IgE to recombinant Api m 1 and rVes v 5 is valuable but not sufficient to distinguish bee from wasp venom allergy. J Allergy Clin Immunol. 2011;128:247–248; author reply 248. doi:10.1016/j.jaci.2011.02.021.

    Article  CAS  PubMed  Google Scholar 

  61. Mittermann I, Zidarn M, Silar M, Markovic-Housley Z, Aberer W, Korosec P, et al. Recombinant allergen-based IgE testing to distinguish bee and wasp allergy. J Allergy Clin Immunol. 2010;125:1300–1307.e3. doi:10.1016/j.jaci.2010.03.017.

    Article  CAS  PubMed  Google Scholar 

  62. Korosec P, Valenta R, Mittermann I, Celesnik N, Erzen R, Zidarn M, Kosnik M. Low sensitivity of commercially available rApi m 1 for diagnosis of honeybee venom allergy. J Allergy Clin Immunol. 2011;128:671–3. doi:10.1016/j.jaci.2011.03.012.

    Article  CAS  PubMed  Google Scholar 

  63. Muller UR, Johansen N, Petersen AB, Fromberg-Nielsen J, Haeberli G. Hymenoptera venom allergy: analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5. Allergy. 2009;64:543–8. doi:10.1111/j.1398-9995.2008.01794.x.

    Article  CAS  PubMed  Google Scholar 

  64. Egner W, Ward C, Brown DL, Ewan PW. The frequency and clinical significance of specific IgE to both wasp (Vespula) and honey-bee (Apis) venoms in the same patient. Clin Exp Allergy. 1998;28:26–34.

    Article  CAS  PubMed  Google Scholar 

  65. Brehler R, Grundmann S, Stocker B. Cross-reacting carbohydrate determinants and hymenoptera venom allergy. Curr Opin Allergy Clin Immunol. 2013;13:360–4. doi:10.1097/ACI.0b013e328362c544.

    Article  CAS  PubMed  Google Scholar 

  66. Carballada FJ, Gonzalez-Quintela A, Nunez-Orjales R, Vizcaino L, Boquete M. Double (honeybee and wasp) immunoglobulin E reactivity in patients allergic to Hymenoptera venom: the role of cross-reactive carbohydrates and alcohol consumption. J Investig Allergol Clin Immunol. 2010;20:484–9.

    CAS  PubMed  Google Scholar 

  67. Mertens M, Brehler R. Suitability of different glycoproteins and test systems for detecting cross-reactive carbohydrate determinant-specific IgE in hymenoptera venom-allergic patients. Int Arch Allergy Immunol. 2011;156:43–50. doi:10.1159/000322279.

    Article  CAS  PubMed  Google Scholar 

  68. Blank S, Neu C, Hasche D, Bantleon FI, Jakob T, Spillner E. Polistes species venom is devoid of carbohydrate-based cross-reactivity and allows interference-free diagnostics. J Allergy Clin Immunol. 2013;131:1239–42. doi:10.1016/j.jaci.2012.10.047.

    Article  CAS  PubMed  Google Scholar 

  69. • Rafei-Shamsabadi D, Muller S, Pfutzner W, Spillner E, Rueff F, Jakob T. Recombinant allergens rarely allow identification of Hymenoptera venom-allergic patients with negative specific IgE to whole venom preparations. J Allergy Clin Immunol. 2014;134:493–4. doi:10.1016/j.jaci.2014.05.035. This work demonstrates that using recombinant allergens in patients with negative specific IgE to HBV or YCV did not improve sensitivity in their study in contrast to [73].

    Article  CAS  PubMed  Google Scholar 

  70. • Cifuentes L, Vosseler S, Blank S, Seismann H, Pennino D, Darsow U, et al. Identification of Hymenoptera venom-allergic patients with negative specific IgE to venom extract by using recombinant allergens. J Allergy Clin Immunol. 2014;133:909–10. doi:10.1016/j.jaci.2013.09.047. This article shows positive data regarding added sensitivity of recombinant allergens in patients with negative specific IgE but positive skin test to venom extract, which is in contrast to [72].

    Article  CAS  PubMed  Google Scholar 

  71. •• Vos B, Kohler J, Muller S, Stretz E, Rueff F, Jakob T. Spiking venom with rVes v 5 improves sensitivity of IgE detection in patients with allergy to Vespula venom. J Allergy Clin Immunol. 2013;131:1225–7. doi:10.1016/j.jaci.2012.07.041. 1227.e1. This study shows the improved sensitivity of YJV extract spiked with rVes v 5 compared to YJV extract alone.

    Article  CAS  PubMed  Google Scholar 

  72. Bokanovic D, Schwarz I, Wutte N, Komericki P, Aberer W, Sturm GJ. Specificity of conventional and Ves v 5-spiked venom decreases with increasing total IgE. J Allergy Clin Immunol. 2014;134:739–41. doi:10.1016/j.jaci.2014.03.038.

    Article  CAS  PubMed  Google Scholar 

  73. Muller U, Helbling A, Hunziker T, Wuthrich B, Pecoud A, Gilardi S, et al. Mastocytosis and atopy: a study of 33 patients with urticaria pigmentosa. Allergy. 1990;45:597–603.

    Article  CAS  PubMed  Google Scholar 

  74. Potier A, Lavigne C, Chappard D, Verret JL, Chevailler A, Nicolie B, Drouet M. Cutaneous manifestations in Hymenoptera and Diptera anaphylaxis: relationship with basal serum tryptase. Clin Exp Allergy. 2009;39:717–25. doi:10.1111/j.1365-2222.2009.03210.x.

    Article  CAS  PubMed  Google Scholar 

  75. •• Michel J, Brockow K, Darsow U, Ring J, Schmidt-Weber CB, Grunwald T, et al. Added sensitivity of component-resolved diagnosis in hymenoptera venom-allergic patients with elevated serum tryptase and/or mastocytosis. Allergy. 2016;71:651–60. doi:10.1111/all.12850. This study demonstrates an improved sensitivity for the diagnosis of patients with mastocytosis/elevated serum tryptase by using recombinant hymenoptera venom allergens in combination with lowering the threshold forspecific IgE to hymenoptera venom extract to 0.1 kU A /L.

    Article  CAS  PubMed  Google Scholar 

  76. Ruiz B, Serrano P, Moreno C. IgE-Api m 4 is useful for identifying a particular phenotype of bee venom allergy. J Investig Allergol Clin Immunol. 2016;26:355–61. doi:10.18176/jiaci.0053.

    Article  CAS  PubMed  Google Scholar 

  77. •• Frick M, Fischer J, Helbling A, Rueff F, Wieczorek D, Ollert M, et al. Predominant Api m 10 sensitization as risk factor for treatment failure in honey bee venom immunotherapy. J Allergy Clin Immunol. 2016;138:1663–1671.e9. doi:10.1016/j.jaci.2016.04.024. This study implies that Api m 10 sensitization is a risk factor for treatment failure because of a underrepresentation in several therapeutic HBV preparation.

    Article  CAS  PubMed  Google Scholar 

  78. Blank S, Seismann H, Michel Y, McIntyre M, Cifuentes L, Braren I, et al. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts. Allergy. 2011;66:1322–9. doi:10.1111/j.1398-9995.2011.02667.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Brockow.

Ethics declarations

Conflict of Interest

Dr. Brockow reports personal fees from Phadia Diagnostics. Dr. Tomsitz declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Anaphylaxis and Drug Allergy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomsitz, D., Brockow, K. Component Resolved Diagnosis in Hymenoptera Anaphylaxis. Curr Allergy Asthma Rep 17, 38 (2017). https://doi.org/10.1007/s11882-017-0707-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-017-0707-0

Keywords

Navigation