Skip to main content

Advertisement

Log in

Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases

  • Autoimmunity (TK Tarrant, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, are characterized by chronic, T-cell-mediated inflammation of the gastrointestinal tract that can cause significant, lifelong morbidity. Data from both human and animal studies indicate that IBDs are likely caused by dysregulated immune responses to resident intestinal microbes. Certain products from mycobacteria, fungi, and Clostridia stimulate increased effector T cell responses during intestinal inflammation, whereas other bacterial products from Clostridia and Bacteroides promote anti-inflammatory regulatory T cell responses. Antibody responses to bacterial and fungal components may help predict the severity of IBDs. While most currently approved treatments for IBDs generally suppress the patient’s immune system, our growing understanding of microbial influences in IBDs will likely lead to the development of new diagnostic tools and therapies that target the intestinal microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kappelman MD et al. Direct health care costs of Crohn’s disease and ulcerative colitis in US children and adults. Gastroenterology. 2008;135:1907–13.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Gibson TB et al. The direct and indirect cost burden of Crohn’s disease and ulcerative colitis. J Occup Environ Med. 2008;50:1261–72.

    Article  PubMed  Google Scholar 

  3. Orchard TR, Wordsworth BP, Jewell DP. Peripheral arthropathies in inflammatory bowel disease: their articular distribution and natural history. Gut. 1998;42(3):387–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hansen J, Gulati A, Sartor RB. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol. 2010;26:564–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Gevers D et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Haberman Y et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest. 2014;124:3617–33. Largest microbiome study in human IBD patients published to date.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Norman JM et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447–60. First large-scale virome study in human IBD patients.

    Article  CAS  PubMed  Google Scholar 

  8. Chehoud C et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015.

  9. Iliev ID et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314–7. Demonstrates that fungal elements play a role in the pathogenesis of experimental IBDs.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rutgeerts P et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet. 1991;338:771–4.

    Article  CAS  PubMed  Google Scholar 

  11. D’Haens GR et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology. 1998;114:262–7.

    Article  PubMed  Google Scholar 

  12. Ohkusa T et al. Newly developed antibiotic combination therapy for ulcerative colitis: a double-blind placebo-controlled multicenter trial. Am J Gastroenterol. 2010;105:1820–9.

    Article  CAS  PubMed  Google Scholar 

  13. Turner D, Levine A, Kolho KL, Shaoul R, Ledder O. Combination of oral antibiotics may be effective in severe pediatric ulcerative colitis: a preliminary report. J Crohns Colitis. 2014;8:1464–70.

    Article  PubMed  Google Scholar 

  14. D’Haens GR et al. Therapy of metronidazole with azathioprine to prevent postoperative recurrence of Crohn’s disease: a controlled randomized trial. Gastroenterology. 2008;135:1123–9.

    Article  PubMed  Google Scholar 

  15. Brandt LJ, Bernstein LH, Boley SJ, Frank MS. Metronidazole therapy for perineal Crohn’s disease: a follow-up study. Gastroenterology. 1982;83:383–7.

    CAS  PubMed  Google Scholar 

  16. Thia KT et al. Ciprofloxacin or metronidazole for the treatment of perianal fistulas in patients with Crohn’s disease: a randomized, double-blind, placebo-controlled pilot study. Inflamm Bowel Dis. 2009;15:17–24.

    Article  PubMed  Google Scholar 

  17. Rutgeerts P et al. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology. 1995;108:1617–21.

    Article  CAS  PubMed  Google Scholar 

  18. Rutgeerts P et al. Ornidazole for prophylaxis of postoperative Crohn’s disease recurrence: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2005;128:856–61.

    Article  CAS  PubMed  Google Scholar 

  19. Prantera C et al. Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology. 2012;142:473–481 e4. Large, randomized, controlled trial that demonstrates a clinical benefit of a non-absorbed antibiotic in Crohn’s disease.

  20. Tursi A et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2010;105:2218–27.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sood A et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol. 2009;7:1202–9, 1209 e1.

  22. Fedorak RN et al. The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin Gastroenterol Hepatol. 2015;13:928–35 e2. First randomized, controlled trial of probiotics to prevent post-operative Crohn’s disease recurrence. There was no significant difference in the primary endpoint between treatment and control groups.

  23. Moayyedi P et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102–109 e6. Randomized controlled trial demonstrating effectiveness of fecal microbial transplant in inducing remission in ulcerative colitis patients. There was a strong donor effect.

  24. Rossen NG et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110–118 e4. Randomized controlled trial demonstrating that fecal microbial transplant was no better than placebo at inducing remission in ulcerative colitis patients.

  25. Kim SC et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology. 2005;128:891–906.

    Article  CAS  PubMed  Google Scholar 

  26. Cadwell K et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456:259–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hansen JJ, Sartor RB. Insights provided by animal models into the pathogenesis and treatment of IBD. In: Bernstein C, editor. The inflammatory bowel disease yearbook. Volume 4. London: Remedica; 2007. p. 19–55.

    Google Scholar 

  28. Gulwani-Akolkar B et al. Selective expansion of specific T cell receptors in the inflamed colon of Crohn’s disease. J Clin Invest. 1996;98:1344–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Camus M et al. Oligoclonal expansions of mucosal T cells in Crohn’s disease predominate in NKG2D-expressing CD4 T cells. Mucosal Immunol. 2014;7:325–34.

    Article  CAS  PubMed  Google Scholar 

  30. Abadia-Molina AC et al. In vivo generation of oligoclonal colitic CD4+ T-cell lines expressing a distinct T-cell receptor Vbeta. Gastroenterology. 2005;128:1268–77.

    Article  CAS  PubMed  Google Scholar 

  31. Moss MT et al. Polymerase chain reaction detection of Mycobacterium paratuberculosis and Mycobacterium avium subsp silvaticum in long term cultures from Crohn’s disease and control tissues. Gut. 1992;33:1209–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Olsen I et al. Isolation of Mycobacterium avium subspecies paratuberculosis reactive CD4 T cells from intestinal biopsies of Crohn’s disease patients. PLoS One. 2009;4:e5641.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lodes MJ et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest. 2004;113:1296–306.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Goto Y et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity. 2014;40:594–607.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Atarashi K et al. ATP drives lamina propria T(H)17 cell differentiation. Nature. 2008;455:808–12.

    Article  CAS  PubMed  Google Scholar 

  36. Eun CS et al. Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10−/− mice. Infect Immun. 2014;82:2239–46.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Jyonouchi H, Geng L, Cushing-Ruby A, Monteiro IM. Aberrant responses to TLR agonists in pediatric IBD patients; the possible association with increased production of Th1/Th17 cytokines in response to Candida, a luminal antigen. Pediatr Allergy Immunol. 2010;21:e747–55.

    Article  PubMed  Google Scholar 

  38. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993;5:1461–71.

    Article  CAS  PubMed  Google Scholar 

  39. Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med. 1993;178:237–44.

    Article  CAS  PubMed  Google Scholar 

  40. Lord JD, Valliant-Saunders K, Hahn H, Thirlby RC, Ziegler SF. Paradoxically increased FOXP3+ T cells in IBD do not preferentially express the isoform of FOXP3 lacking exon 2. Dig Dis Sci. 2012;57:2846–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lord J, Chen J, Thirlby RC, Sherwood AM, Carlson CS. T-cell receptor sequencing reveals the clonal diversity and overlap of colonic effector and FOXP3+ T cells in ulcerative colitis. Inflamm Bowel Dis. 2015;21:19–30.

    Article  PubMed  Google Scholar 

  42. Atarashi K et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6. Demonstrates that administration of a mixture of human-derived Clostridia strains can reduce experimental colitis in mice.

    Article  CAS  PubMed  Google Scholar 

  43. Atarashi K et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Arpaia N et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.

    Article  CAS  PubMed  Google Scholar 

  45. Furusawa Y et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    Article  CAS  PubMed  Google Scholar 

  46. Smith PM et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.

    Article  CAS  PubMed  Google Scholar 

  47. Round JL et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107:12204–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 2014;15:413–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Shen Y et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12:509–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. An D et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156:123–33. Demonstrates that neonatal exposure to certain bacterial-derived sphingolipids reduces pro-inflammatory invariant NK cells and susceptibility to experimental colitis in adulthood.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Olszak T et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Schreiber S et al. Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology. 1991;101:1020–30.

    CAS  PubMed  Google Scholar 

  54. El Fassi D, Nielsen CH, Kjeldsen J, Clemmensen O, Hegedus L. Ulcerative colitis following B lymphocyte depletion with rituximab in a patient with Graves’ disease. Gut. 2008;57:714–5.

    Article  PubMed  Google Scholar 

  55. Mishima Y, Liu B, Hansen JJ, Sartor RB. Resident bacteria-stimulated IL-10-secreting B cells ameliorate T cell-mediated colitis by inducing Tr-1 cells that require IL-27-signaling. Cell Mol Gastroenterol Hepatol. 2015;1:295–310.

    Article  PubMed  Google Scholar 

  56. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–39.

    Article  CAS  PubMed  Google Scholar 

  57. Fagarasan S et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science. 2002;298:1424–7.

    Article  CAS  PubMed  Google Scholar 

  58. Iwasaki A, Kelsall BL. Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer’s patch dendritic cells. J Immunol. 2001;166:4884–90.

    Article  CAS  PubMed  Google Scholar 

  59. Cerutti A. Location, location, location: B-cell differentiation in the gut lamina propria. Mucosal Immunol. 2008;1:8–10.

    Article  CAS  PubMed  Google Scholar 

  60. Palm NW et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10. First study to demonstrate that IgA preferentially binds to colitogenic luminal bacteria.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Saxon A, Shanahan F, Landers C, Ganz T, Targan S. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol. 1990;86:202–10.

    Article  CAS  PubMed  Google Scholar 

  62. Seibold F, Brandwein S, Simpson S, Terhorst C, Elson CO. pANCA represents a cross-reactivity to enteric bacterial antigens. J Clin Immunol. 1998;18:153–60.

    Article  CAS  PubMed  Google Scholar 

  63. Cohavy O et al. Identification of a novel mycobacterial histone H1 homologue (HupB) as an antigenic target of pANCA monoclonal antibody and serum immunoglobulin A from patients with Crohn’s disease. Infect Immun. 1999;67:6510–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Cohavy O et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun. 2000;68:1542–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Terjung B et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut. 2010;59:808–16.

    Article  CAS  PubMed  Google Scholar 

  66. Main J et al. Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. BMJ. 1988;297:1105–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Peeters M et al. Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol. 2001;96:730–4.

    Article  CAS  PubMed  Google Scholar 

  68. Wei B et al. Pseudomonas fluorescens encodes the Crohn’s disease-associated I2 sequence and T-cell superantigen. Infect Immun. 2002;70:6567–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Landers CJ et al. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology. 2002;123:689–99.

    Article  CAS  PubMed  Google Scholar 

  70. Sutton CL et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology. 2000;119:23–31.

    Article  CAS  PubMed  Google Scholar 

  71. Dotan I et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn’s disease. Gastroenterology. 2006;131:366–78.

  72. Ferrante M et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut. 2007;56:1394–403.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Papp M et al. New serological markers for inflammatory bowel disease are associated with earlier age at onset, complicated disease behavior, risk for surgery, and NOD2/CARD15 genotype in a Hungarian IBD cohort. Am J Gastroenterol. 2008;103:665–81.

    Article  CAS  PubMed  Google Scholar 

  74. Elkadri AA et al. Serum antibodies associated with complex inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:1499–505.

    Article  PubMed  Google Scholar 

  75. Targan SR et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 2005;128:2020–8.

    Article  CAS  PubMed  Google Scholar 

  76. Mow WS et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn’s disease. Gastroenterology. 2004;126:414–24.

    Article  CAS  PubMed  Google Scholar 

  77. Dubinsky MC et al. Serum immune responses predict rapid disease progression among children with Crohn’s disease: immune responses predict disease progression. Am J Gastroenterol. 2006;101:360–7.

    Article  PubMed Central  PubMed  Google Scholar 

  78. van Schaik FD et al. Serological markers predict inflammatory bowel disease years before the diagnosis. Gut. 2013;62:683–8.

    Article  PubMed  Google Scholar 

  79. Plevy S et al. Combined serological, genetic, and inflammatory markers differentiate non-IBD, Crohn’s disease, and ulcerative colitis patients. Inflamm Bowel Dis. 2013;19:1139–48.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Hansen declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Hansen.

Additional information

This article is part of the Topical Collection on Autoimmunity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, J.J. Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases. Curr Allergy Asthma Rep 15, 61 (2015). https://doi.org/10.1007/s11882-015-0562-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0562-9

Keywords

Navigation