Skip to main content

Advertisement

Log in

Spatiotemporal retrieval of the aerosol optical thickness using Landsat 8 OLI imagery for Indian urban area

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

The surge in urbanization and industrialization is majorly contributing to ambient air pollution, predominantly in terms of particulate emissions. Human health is highly susceptible to the particles suspended in the air due to their lightweight and small size (≤ 2.5 μm), called atmospheric aerosols. In India, insufficient ground-based instruments hinder continuous aerosol monitoring. However, remote sensing offers earth imagery for in-depth analysis of air quality and weather parameters. In the present study, an attempt is made to retrieve the high-resolution (30 m) AOT using Landsat 8 Operational Land Imager (L8-OLI) imagery for Pune, Maharashtra, from the years 2014 to 2021. For the atmospheric corrections and better spatiotemporal resolution, the dark target spectrum-based Image Corrections for Atmospheric Effects (iCOR) algorithm was executed. The year 2021 showed the highest mean AOT value at the Pashan location (18.537° N, 73.805° E) in Pune, India. Also, seasonal analysis (winter and summer) indicates that the mean AOT in the winter gradually increases every year. The AOT retrieved using L8-OLI with iCOR and AOT retrieved from Aerosol Robotic Network (AERONET) in situ monitoring station (± 30 min) at 440 nm showed R2 = 0.76, r = 0.83, and RMSE = 0.1012. From this, it is summarized that for L8-OLI images, the iCOR algorithm performs well for the atmospheric correction by retrieving AOT at high spatial resolution with minimum cloud cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data used are included in the published article.

Abbreviations

ACIX:

Atmospheric Correction Inter-comparison eXercise

AERONET:

Aerosol Robotic Network

AOT:

Aerosol Optical Thickness

BoA:

Bottom of the Atmosphere

CC:

Cloud Cover

CFMask:

C Function of Mask

DB:

Deep Blue

DDV:

Dense Dark Vegetation

DEM:

Digital Elevation Model

DSF:

Dark Spectrum Fitting

DT:

Dark Target

ESA:

European Space Agency

i.e.:

That is

iCOR :

Image Corrections for Atmospheric Effects

IDW:

Inverse Distance Weighted

L8-OLI:

Landsat 8 Operational Land Imager

LaSRC:

Land Surface Reflectance Code

LibRadtran:

Library for Radiative Transfer

LUT:

Look-Up-Table

MACCS:

Multi-Sensor Atmospheric Correction and Cloud Screening

MAJA:

MACCS-ATCOR Joint Algorithm

MEIT:

Multiparameter Endmember Inversion Technique

MODTRAN5:

Moderate-Resolution Atmospheric Radiance and Transmittance Model–Version 5

NASA:

National Aeronautics and Space Administration

NOAA:

National Oceanic and Atmospheric Administration

RMSE:

Root Mean Squared Error

SIMEC:

SIMilarity Environmental Correction

TIRS:

Thermal Infrared Sensor

ToA:

Top of the Atmosphere

USGS:

United States Geological Survey

References

  • Aldabash M, Balcik FB, Glantz P (2020) Validation of MODIS C6.1 and MERRA-2 AOD using AERONET observations: a comparative study over Turkey. Atmosphere (Basel) 11. https://doi.org/10.3390/ATMOS11090905

  • Andreae MO, Rosenfeld D (2008) Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci Rev 89. https://doi.org/10.1016/j.earscirev.2008.03.001

  • Basith A, Nuha MU, Prastyani R, Winarso G (2019) Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV). Commun Sci Technol 4. https://doi.org/10.21924/cst.4.2.2019.122

  • Bilal M, Qiu Z (2018) Aerosol retrievals over bright urban surfaces using Landsat 8 images. In: International Geoscience and Remote Sensing Symposium (IGARSS), IEEE Xplore

  • Bui QT, Jamet C, Vantrepotte V et al (2022) Evaluation of Sentinel-2/MSI atmospheric correction algorithms over two contrasted French coastal waters. Remote Sens (Basel) 14. https://doi.org/10.3390/rs14051099

  • Chen H, Fan X, Xia X (2018) Review of satellite remote sensing of atmospheric aerosols and its applications in climate and environment studies. Chinese J Atmos Sci 42. https://doi.org/10.3878/j.issn.1006-9895.1801.17272

  • Cirino GG, Souza RAF, Adams DK, Artaxo P (2014) The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos Chem Phys 14. https://doi.org/10.5194/acp-14-6523-2014

  • David LM, Ravishankara AR, Kodros JK et al (2018) Aerosol optical depth over India. J Geophys Res: Atmos 123. https://doi.org/10.1002/2017JD027719

  • De Keukelaere L, Sterckx S, Adriaensen S et al (2018) Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. Eur J Remote Sens 51. https://doi.org/10.1080/22797254.2018.1457937

  • Doxani G, Vermote E, Roger JC et al (2018) Atmospheric correction inter-comparison exercise. Remote Sens (Basel) 10. https://doi.org/10.3390/rs10020352

  • Ebi KL, McGregor G (2008) Climate change, tropospheric ozone and particulate matter, and health impacts. Environ Health Perspect 116:1449–1455. https://doi.org/10.1289/ehp.11463

  • Geogdzhayev IV, Mishchenko MI (2015) Validation of long-term global aerosol climatology project optical thickness retrievals using AERONET and MODIS data. Remote Sens (Basel) 7. https://doi.org/10.3390/rs71012588

  • Gitahi J, Hahn M (2020) High-resolution urban aerosol monitoring using Sentinel -2 satellite images. E3S Web of Conferences 171. EDP Sciences, 2023

  • Guo S, Hu M, Zamora ML et al (2014) Elucidating severe urban haze formation in China. Proc Natl Acad Sci USA 111. https://doi.org/10.1073/pnas.1419604111

  • Hadjimitsis DG (2009) Aerosol optical thickness (AOT) retrieval over land using satellite image-based algorithm. Air Qual Atmos Health 2. https://doi.org/10.1007/s11869-009-0036-0

  • Han M, Jia S, Zhang C (2022) Estimation of high-resolution PM2.5 concentrations based on gap-filling aerosol optical depth using gradient boosting model. Air Qual Atmos Health 15. https://doi.org/10.1007/s11869-021-01149-w

  • He Y, Sun L, Sun Z, Hu X (2021) Modis aerosol optical thickness product algorithm verification and analysis. Aerosol Air Qual Res 21. https://doi.org/10.4209/AAQR.210019

  • Jia C, Sun L, Chen Y et al (2020) Inversion of aerosol optical depth for Landsat 8 OLI data using deep belief network. Yaogan Xuebao/J Remote Sens 24. https://doi.org/10.11834/jrs.20200048

  • Jin Y, Hao Z, Chen J et al (2021) Retrieval of urban aerosol optical depth from Landsat 8 OLI in Nanjing, China. Remote Sens (Basel) 13. https://doi.org/10.3390/rs13030415

  • Jin Y, Hao Z, Huang H et al (2022) Evaluation of LaSRC aerosol optical depth from Landsat-8 and Sentinel-2 in Guangdong-Hong Kong-Macao greater bay area. China Atmos Environ 280:119128. https://doi.org/10.1016/J.ATMOSENV.2022.119128

    Article  CAS  Google Scholar 

  • Kganyago M, Ovakoglou G, Mhangara P et al (2020) Validation of atmospheric correction approaches for Sentinel-2 under partly-cloudy conditions in an African agricultural landscape. https://doi.org/10.1117/12.257293

  • Kumar V, Mehta M (2023) Investigating the applicability of a simple iterative approach for aerosol optical depth (AOD) retrieval over diverse land surface types from Landsat 8 and Sentinel 2 using visible and near-infrared (VNIR) spectral bands. Atmos Environ 314. https://doi.org/10.1016/j.atmosenv.2023.120082

  • Li Z, Roy DP, Zhang ZK et al (2019) Remote sensing Evaluation of Landsat-8 and Sentinel-2A aerosol optical depth retrievals across Chinese cities and implications for medium spatial resolution urban aerosol monitoring. Remote Sensing (MDPI). https://doi.org/10.3390/rs11020122

  • Lin H, Li S, Xing J et al (2021a) Fusing retrievals of high resolution aerosol optical depth from landsat-8 and sentinel-2 observations over urban areas. Remote Sens (Basel) 13. https://doi.org/10.3390/rs13204140

  • Lin H, Li S, Xing J et al (2021b) High resolution aerosol optical depth retrieval over urban areas from Landsat-8 OLI images. Atmos Environ 261. https://doi.org/10.1016/j.atmosenv.2021.118591

  • Ma F, Guan Z (2018) Seasonal variations of aerosol optical depth over East China and India in relationship to the Asian monsoon circulation. J Meteorol Res 32. https://doi.org/10.1007/s13351-018-7171-1

  • Marsli I, Diouri M, Steli H, El Khabbouti A (2019) Optical characterization of cloud and aerosol of the temperate zone. Air Qual Atmos Health 12. https://doi.org/10.1007/s11869-019-00716-6

  • Midhuna TM, Gharai B, Jose S, Rao PVN (2017) Study on regional variations of aerosol loading using long term satellite data over Indian region. J Indian Soc Remote Sens 45:685–697. https://doi.org/10.1007/s12524-016-0622-1

    Article  Google Scholar 

  • Okpalaonwuka C, Olusegun CF, Olusola A, Ogunjo S (2023) Validation of MODIS AOD retrievals in West Africa: a comparison with AERONET observations. Air Qual Atmos Health 16. https://doi.org/10.1007/s11869-023-01391-4

  • Omar AH, Won JG, Winker DM et al (2005) Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J Geophys Res D: Atmos 110. https://doi.org/10.1029/2004JD004874

  • Ou Y, Chen F, Zhao W et al (2017) Landsat 8-based inversion methods for aerosol optical depths in the Beijing area. Atmos Pollut Res 8. https://doi.org/10.1016/j.apr.2016.09.004

  • Raymaekers D, Knaeps E, Van De Kerchove R (2019) Remote sensing for a sustainable coastal management. https://doi.org/10.5339/qfarc.2016.EEPP1662

  • Renosh PR, Doxaran D, De Keukelaere L, Gossn JI (2020) Evaluation of atmospheric correction algorithms for sentinel-2-MSI and sentinel-3-OLCI in highly turbid estuarine waters. Remote Sens (Basel) 12. https://doi.org/10.3390/RS12081285

  • Ridwan MA, Radzi NAM, Ahmad WSHMW et al (2018) Applications of landsat-8 data: a survey. Int J Eng Technol(UAE) 7. https://doi.org/10.14419/ijet.v7i4.35.22858

  • Russell AG, Brunekreef B (2009) A focus on particulate matter and health. Environ Sci Technol 43:4620–4625

  • Safai PD, Rao PS, Momin GA et al (2004) Some observations on the characteristics of aerosols at traffic junctions in Pune city. Indian J Radio Space Phys 33:260–266

  • Schäfer K, Harbusch A, Emeis S et al (2008) Correlation of aerosol mass near the ground with aerosol optical depth during two seasons in Munich. Atmos Environ 42:4036–4046. https://doi.org/10.1016/J.ATMOSENV.2008.01.060

    Article  Google Scholar 

  • Sikder S, Islam MAR (2018) Aerosol Optical Thickness (AOT) Assessment using GIS & remote sensing. Int J Innov Res Comput Sci Technol 6. https://doi.org/10.21276/ijircst.2018.6.4.5

  • Sterckx S, Knaeps S, Kratzer S, Ruddick K (2015) SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters. Remote Sens Environ 157. https://doi.org/10.1016/j.rse.2014.06.017

  • Sun Y, Tang BH (2021) Estimation of net surface shortwave radiation from remotely sensed data under dust aerosol conditions. IEEE Access 9. https://doi.org/10.1109/ACCESS.2021.3069791

  • Sun L, Wei J, Bilal M et al (2016) Aerosol optical depth retrieval over bright areas using Landsat 8 OLI images. Remote Sens (Basel) 8. https://doi.org/10.3390/rs8010023

  • Tian X, Sun L, Liu Q, Li X (2018) Retrieval of high-resolution aerosol optical depth using Landsat 8 OLI data over Beijing. Yaogan Xuebao/J Remote Sens 22. https://doi.org/10.11834/jrs.20186362

  • Valdivieso-Ros C, Alonso-Sarria F, Gomariz-Castillo F (2021) Effect of different atmospheric correction algorithms on Sentinel-2 imagery classification accuracy in a semiarid Mediterranean area. Remote Sens (Basel) 13. https://doi.org/10.3390/rs13091770

  • Wolters E, Toté C, Sterckx S et al (2021) iCOR atmospheric correction on Sentinel‐3/OLCI over land: intercomparison with AERONET, RadCalNet, and SYN level‐2. Remote Sens (Basel) 13. https://doi.org/10.3390/rs13040654

  • Xie H, Zhao J, Wang K, Peng H (2021) Long-term variations in solar radiation, diffuse radiation, and diffuse radiation fraction caused by aerosols in China during 1961–2016. PLoS One 16(5):e0250376. https://doi.org/10.1371/journal.pone.0250376

  • Yan X, Luo N, Liang C (2020) Simplified and fast atmospheric radiative transfer model for satellite-based aerosol optical depth retrieval. Atmos Environ 224:117362. https://doi.org/10.1016/J.ATMOSENV.2020.117362

  • Yang Y, Chen Y, Yang K et al (2021) High-resolution aerosol retrieval over urban areas using Sentinel-2 data. Atmos Res 264. https://doi.org/10.1016/j.atmosres.2021.105829

Download references

Author information

Authors and Affiliations

Authors

Contributions

AC: Conceptualization and literature review, methodology, formal analysis and data retrieval, investigations, writing original draft and editing; NJ: investigation,resources, supervision, review and editing; and RC: Final review and editing.

Corresponding author

Correspondence to Namrata Jariwala.

Ethics declarations

Consent for publication

All the authors have approved the version to be published.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Jariwala, N. & Christian, R. Spatiotemporal retrieval of the aerosol optical thickness using Landsat 8 OLI imagery for Indian urban area. Air Qual Atmos Health (2024). https://doi.org/10.1007/s11869-024-01520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11869-024-01520-7

Keywords

Navigation