Skip to main content

Advertisement

Log in

How do temperature and precipitation drive dengue transmission in nine cities, in Guangdong Province, China: a Bayesian spatio-temporal model analysis

  • Original Paper
  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Dengue remains an important public health issue in South China. In this study, we aim to quantify the effect of climatic factors on dengue in nine cities of the Pearl River Delta (PRD) in South China. Monthly dengue cases, climatic factors, socio-economic, geographical, and mosquito density data in nine cities of the PRD from 2008 to 2019 were collected. A generalized additive model (GAM) was applied to investigate the exposure–response relationship between climatic factors (temperature and precipitation) and dengue incidence in each city. A spatio-temporal conditional autoregressive model (ST-CAR) with a Bayesian framework was employed to estimate the effect of temperature and precipitation on dengue and to explore the temporal trend of the dengue risk by adjusting the socioeconomic and geographical factors. There was a positive non-linear association between the temperature and dengue incidence in the nine cities in south China, while the approximate linear negative relationship between precipitation and dengue incidence was found in most of the cities. The ST-CAR model analysis showed the risk of dengue transmission increased by 101.0% (RR: 2.010, 95% CI: 1.818 to 2.151) for 1 °C increase in monthly temperature at 2 months lag in the overall nine cities, while a 3.2% decrease (relative risk (RR): 0.968, 95% CI: 0.946 to 0.985) and a 2.1% decrease (RR: 0.979, 95% CI: 0.975 to 0.983) for 10 mm increase in monthly precipitation at present month and 3 months lag. The expected incidence of dengue has risen again since 2015, and the highest incidence was in Guangzhou City. Our study showed that climatic factors, including temperature and precipitation would drive the dengue transmission, and the dengue epidemic risk has been increasing. The findings may contribute to the climate-driven dengue prediction and dengue risk projection for future climate scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

PRD :

Pearl River Delta

GAM :

Generalized additive model

CAR :

Conditional autoregressive

NNIDRIS :

National Notifiable Infectious Diseases Reporting Information System

MOI :

Mosquito oviposition index

GDCDC :

Guangdong Provincial Center for Disease Control and Prevention

NDVI :

Normalized difference vegetation index

MCMC :

Markov chain Monte Carlo

RR :

Relative risk

ER :

Excess risk

References

  • Arcari P, Tapper N, Pfueller S (2007) Regional variability in relationships between climate and dengue/DHF in Indonesia. Singap J Trop Geogr 28:251–272

    Article  Google Scholar 

  • Aswi A, Cramb S, Duncan E, Hu W, White G, Mengersen K (2020) Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling. Spat Spatiotemporal Epidemiol 33:100335

    Article  Google Scholar 

  • Beale L, Abellan JJ, Hodgson S, Jarup L (2008) Methodologic issues and approaches to spatial epidemiology. Environ Health Perspect 116:1105–1110

    Article  Google Scholar 

  • Bivand R, Altman M, Anselin L, Assunção R, Berke O, Bernat A, et al. Package ‘spdep’. The Comprehensive R Archive Network 2015.

  • Cao Z, Liu T, Li X, Wang J, Lin H, Chen L, et al (2017) Individual and interactive effects of socio-ecological factors on dengue fever at fine spatial scale: a geographical detector-based analysis. Int J Environ Res Public Health 14

  • Carrington LB, Armijos MV, Lambrechts L, Scott TW (2013) Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis 7:e2190

    Article  Google Scholar 

  • Chen SC, Liao CM, Chio CP, Chou HH, You SH, Cheng YH (2010) Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Sci Total Environ 408:4069–4075

    Article  CAS  Google Scholar 

  • Cheng J, Bambrick H, Yakob L, Devine G, Frentiu FD, Williams G et al (2021) Extreme weather conditions and dengue outbreak in Guangdong, China: spatial heterogeneity based on climate variability. Environ Res 196:110900

    Article  CAS  Google Scholar 

  • Desjardins MR, Eastin MD, Paul R, Casas I, Delmelle EM (2020) Space-time conditional autoregressive modeling to estimate neighborhood-level risks for dengue fever in Cali. Colombia Am J Trop Med Hyg 103:2040–2053

    Article  Google Scholar 

  • Escaramís G, Carrasco JL, Ascaso C (2008) Detection of significant disease risks using a spatial conditional autoregressive model. Biometrics 64:1043–1053

    Article  Google Scholar 

  • Fan J, Lin H, Wang C, Bai L, Yang S, Chu C et al (2014) Identifying the high-risk areas and associated meteorological factors of dengue transmission in Guangdong Province, China from 2005 to 2011. Epidemiol Infect 142:634–643

    Article  CAS  Google Scholar 

  • Fouque F, Reeder JC (2019) Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect Dis Poverty 8:51

    Article  Google Scholar 

  • Jing X, Wang X, Jiang Y (1998) Investigation on the hover ability and spread range of Aedes albopictus. Chin J Vector Biol Control 9:165–167

    Google Scholar 

  • Johansson MA, Dominici F, Glass GE (2009) Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 3:e382

    Article  Google Scholar 

  • Keating J (2001) An investigation into the cyclical incidence of dengue fever. Soc Sci Med 53:1587–1597

    Article  CAS  Google Scholar 

  • Knorr-Held L (2000) Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 19:2555–2567

    Article  CAS  Google Scholar 

  • Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB et al (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci 108:7460–7465

    Article  CAS  Google Scholar 

  • Lee D (2020) A tutorial on spatio-temporal disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package. Spat Spatiotemporal Epidemiol 34:100353

    Article  Google Scholar 

  • Lee D, Rushworth A, Napier G (2015) CARBayesST version 3.0: spatio-temporal areal unit modelling in R with conditional autoregressive priors

  • Li Z, Yin W, Clements A, Williams G, Lai S, Zhou H et al (2012) Spatiotemporal analysis of indigenous and imported dengue fever cases in Guangdong province, China. BMC Infect Dis 12:132

    Article  Google Scholar 

  • Li C, Wang X, Wu X, Liu J, Ji D, Du J (2017) Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors. Sci Total Environ 605–606:867–873

    Article  Google Scholar 

  • Liu KK, Wang T, Huang XD, Wang GL, Xia Y, Zhang YT et al (2017) Risk assessment of dengue fever in Zhongshan, China: a time-series regression tree analysis. Epidemiol Infect 145:451–461

    Article  Google Scholar 

  • Lowe R, Lee SA, O’Reilly KM, Brady OJ, Bastos L, Carrasco-Escobar G et al (2021) Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet Health 5:e209–e219

    Article  Google Scholar 

  • Mabaso M, Vounatsou P, Midzi S et al (2006) Spatio-temporal analysis of the role of climate in inter-annual variation of malaria incidence in Zimbabwe 5:20

  • Martínez-Bello DA, López-Quílez A, Torres PA (2017) Relative risk estimation of dengue disease at small spatial scale. Int J Health Geogr 16:31

    Article  Google Scholar 

  • Meng H, Xiao J, Liu T, Zhu Z, Gong D, Kang M et al (2021) The impacts of precipitation patterns on dengue epidemics in Guangzhou city. Int J Biometeorol 65:1929–1937

    Article  Google Scholar 

  • Muegge R, Dean N, Jack E, Lee D et al (2023) National lockdowns in England: the same restrictions for all, but do the impacts on COVID-19 mortality risks vary geographically? Spatial and Spatio-temporal Epidemiology 44:100559

  • National Health Commission of the People’s Republic of China (2008) Diagnostic criteria for dengue fever (WS-216 2008). National Health Commission of the People’s Republic of China

  • Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S (2014) Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC Infect Dis 14:167

    Article  Google Scholar 

  • Qi X, Wang Y, Li Y, Meng Y, Chen Q, Ma J et al (2015) The effects of socioeconomic and environmental factors on the incidence of dengue fever in the Pearl River Delta, China, 2013. PLoS Negl Trop Dis 9:e0004159

    Article  Google Scholar 

  • Raghavan RK, Hanlon CA, Goodin DG, Davis R, Moore M, Moore S, Anderson GA (2016) Bayesian spatiotemporal pattern and eco-climatological drivers of striped skunk rabies in the north central plains. PLOS Negl Trop Dis 10(4):e0004632. https://doi.org/10.1371/journal.pntd.0004632

  • Rocklöv J, Tozan Y (2019) Climate change and the rising infectiousness of dengue. Emerg Top Life Sci 3:133–142

    Article  Google Scholar 

  • Rodríguez-Prieto V, Martínez-López B, Barasona JA, Acevedo P, Romero B, Rodriguez-Campos S et al (2012) A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Vet Res 8:148

    Article  Google Scholar 

  • Rushworth A, Lee D, Mitchell R (2014) A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London. Spat Spatiotemporal Epidemiol 10:29–38

    Article  Google Scholar 

  • Sang S, Yin W, Bi P, Zhang H, Wang C, Liu X et al (2014) Predicting local dengue transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate variability. PLoS One 9:e102755

    Article  Google Scholar 

  • Statistics Bureau of Guangdong Province (2021) Guangdong statistical yearbook-2021

  • Tian L, Liang F, Xu M, Jia L, Pan X, Clements ACA (2018) Spatio-temporal analysis of the relationship between meteorological factors and hand-foot-mouth disease in Beijing. China BMC Infect Dis 18:158

    Article  Google Scholar 

  • Tuladhar R, Singh A, Banjara MR, Gautam I, Dhimal M, Varma A et al (2019) Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal. Parasit Vectors 12:42

    Article  Google Scholar 

  • Wangdi K, Penjor K, Tsheten T, Tshering C, Gething P, Gray DJ et al (2021) Spatio-temporal patterns of childhood pneumonia in Bhutan: a Bayesian analysis. Sci Rep 11:20422

    Article  CAS  Google Scholar 

  • Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36:143–152

    Article  CAS  Google Scholar 

  • Wilder-Smith A, Ooi EE, Horstick O, Wills B (2019) Dengue Lancet 393:350–363

    Article  Google Scholar 

  • Wu X, Lang L, Ma W, Song T, Kang M, He J et al (2018) Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China. Sci Total Environ 628–629:766–771

    Article  Google Scholar 

  • Xiao JP, He JF, Deng AP, Lin HL, Song T, Peng ZQ et al (2016) Characterizing a large outbreak of dengue fever in Guangdong Province, China. Infect Dis Poverty 5:44

    Article  Google Scholar 

  • Xiao J, Liu T, Lin H, Zhu G, Zeng W, Li X et al (2018) Weather variables and the El Niño Southern Oscillation may drive the epidemics of dengue in Guangdong Province, China. Sci Total Environ 624:926–934

    Article  CAS  Google Scholar 

  • Xu L, Stige LC, Chan KS, Zhou J, Yang J, Sang S et al (2017) Climate variation drives dengue dynamics. Proc Natl Acad Sci U S A 114:113–118

    Article  CAS  Google Scholar 

  • Xu Z, Bambrick H, Frentiu FD, Devine G, Yakob L, Williams G et al (2020) Projecting the future of dengue under climate change scenarios: Progress, uncertainties and research needs. PLoS Negl Trop Dis 14:e0008118

    Article  Google Scholar 

  • Yang H, Macoris M, Galvani K, Andrighetti M, Wanderley D (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137:1188–1202

    Article  CAS  Google Scholar 

  • Yu H-L, Lee C-H, Chien L-C (2016) A spatiotemporal dengue fever early warning model accounting for nonlinear associations with hydrological factors: a Bayesian maximum entropy approach. Stoch Env Res Risk Assess 30:2127–2141

    Article  Google Scholar 

  • Yunzhi Z, Hailin Z, Zhuqing M (1994) Observation on specificity of bloodsucking of Aedes albopictus. Bull Dis Control Prev (China) 9:37–38

    Google Scholar 

  • Zhao X, Cao M, Feng HH, Fan H, Chen F, Feng Z et al (2014) Japanese encephalitis risk and contextual risk factors in southwest China: a Bayesian hierarchical spatial and spatiotemporal analysis. Int J Environ Res Public Health 11:4201–4217

    Article  Google Scholar 

  • Zhao J, He G, Xiao J, Zhu G, Liu T, Hu J et al (2022) Mechanism of temperature on dengue fever transmission and impact of future temperature change on its transmission risk. J Environ Occup Med 39:309–314

    Google Scholar 

  • Zhu G, Xiao J, Zhang B, Liu T, Lin H, Li X et al (2018) The spatiotemporal transmission of dengue and its driving mechanism: a case study on the 2014 dengue outbreak in Guangdong, China. Sci Total Environ 622–623:252–259

    Article  Google Scholar 

  • Zhu G, Liu T, Xiao J, Zhang B, Song T, Zhang Y et al (2019) Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Sci Total Environ 651:969–978

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2018YFA0606200), the Natural Science Foundation of China (42071377), and the Key-Area Research and Development Program of Guangdong Province (2019B111103001).

Author information

Authors and Affiliations

Authors

Contributions

Y. Quan and J. Xiao wrote the manuscript, and J. Xiao, Z. Ren, X. Li, and L. Lin conceived and designed the study and reviewed and revised the manuscript. Y. Zhang, H. Deng, A. Deng, R. Lu, Y. Quan, J. Hu, J. Zhao, T. Liu, and W. Ma contributed to data collection and statistical analysis. Y. Li, Q. Zhang, L. Zhang, J. Wang, and Z. Huang contributed to data visualization. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lifeng Lin, Zhoupeng Ren or Jianpeng Xiao.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the ethics committee of the Guangdong Provincial Center for Disease Control and Prevention (No. W96-027E-201925).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 778 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Y., Zhang, Y., Deng, H. et al. How do temperature and precipitation drive dengue transmission in nine cities, in Guangdong Province, China: a Bayesian spatio-temporal model analysis. Air Qual Atmos Health 16, 1153–1163 (2023). https://doi.org/10.1007/s11869-023-01331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-023-01331-2

Keywords

Navigation