Skip to main content
Log in

Generalized Pizzetti’s formula for Weinstein operator and its applications

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

This study examines various facets of harmonic analysis, with a specific emphasis on the Weinstein operator \(\Delta _{\nu }\) defined in \(\mathbb {R}^{n-1}\times (0, \infty )\). The Weinstein operator is given by

$$\begin{aligned} \Delta _{\nu } = \frac{\partial ^2}{\partial x_1^{2}} + \dots + \frac{\partial ^2}{\partial x_n^{2}} + \frac{2\nu +1}{x_{n}}\frac{\partial }{\partial x_{n}}. \end{aligned}$$

The study begins with an exploration of the well-known Pizzetti’s formula extended to accommodate the Weinstein operator, emphasizing the associated spherical mean and resulting in the derivation of asymptotic expansions. Subsequently, the investigation shifts its focus to the fractional power of the Weinstein operator, particularly exploring the regularized fractional Weinstein operator. Utilizing the Pezzetti formula related to the Weinstein operator, we construct a singular integral representation and establish a regularization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

No datasets were generated or analysed during the current study.

References

  1. Abdelkefi, C.: Maximal functions for Weinstein operator. Ann. Univ. Paedagog. Crac. Stud. Math. 19(1), 105–119 (2020). https://doi.org/10.2478/aupcsm-2020-0009

    Article  MathSciNet  Google Scholar 

  2. Ben Mohamed, H., Saoudi, A.: Calderón type reproducing formula for the Weinstein–Stockwell transform. Series, Rendiconti del Circolo Matematico di Palermo, II (2023)

  3. Ben Nahia, Z., Ben Salem, N.: On a mean value property associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory held in Kouty, Czech Republic (ICPT’ 94), pp. 243–253 (1996)

  4. Ben Nahia, Z.: Spherical harmonics and applications associated with the Weinstein operator. In: Proceedings of the International Conference on Potential Theory held in Kouty, Czech Republic (ICPT ’94), pp. 223–241 (1994)

  5. Ben Salem, N.: Hardy–Littlewood–Sobolev type inequalities associated with the Weinstein operator. Integral Transform. Spec. Funct. 31(1), 18–35 (2020)

    Article  MathSciNet  Google Scholar 

  6. Ben Salem, N.: Inequalities related to spherical harmonics associated with the Weinstein operator. Integral Transform. Spec. Funct. 34(1), 41–64 (2023). https://doi.org/10.1080/10652469.2022.2087063

    Article  MathSciNet  Google Scholar 

  7. Ben Salem, N., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integral Transform. Spec. Funct. 26, 700–718 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bouzeffour, F., Garayev, G.: On the fractional Bessel operator. Integral Transform. Spec. Funct. 33(3), 230–246 (2022)

    Article  MathSciNet  Google Scholar 

  9. Bouzeffour, F., Jedidi, W.: On the fractional Dunkl–Laplacian. Fract. Cal. Appl. Anal. 27, 433–457 (2021)

    Article  MathSciNet  Google Scholar 

  10. Bouzeffour, F., Jedidi, W.: Jacobi-type functions defined by fractional Bessel derivatives. Integral Transform. Spec. Funct. 34(3), 228–243 (2023)

    Article  MathSciNet  Google Scholar 

  11. Bouzeffour, F., Jedidi, W.: Fractional Riesz–Feller type derivative for the one dimensional Dunkl operator and Lipschitz condition. Integral Transform. Spec. Funct. 35(1), 49–60 (2024)

    Article  MathSciNet  Google Scholar 

  12. Brelot, M.: Equation de Weinstein et potentiels de Marcel Riesz. In: Hirsch, F., Mokobodzki, G. (eds) Séminaire de Théorie du Potentiel, No. 3 (Paris, 1976/1977). Lecture Notes in Mathematics, Vol. 681, pp. 18–38. Springer (1978)

  13. Chettaoui, C., Ben Mohamed, H.: Bochner–Hecke theorems in the generalized Weinstein theory setting and applications. In: Complex Analysis and Operator Theory (2023)

  14. Chettaoui, C., Trimèche, K.: Bochner–Hecke theorems for the Weinstein transform and application. Fract. Calc. Appl. Anal. 13(3), 261–280 (2010)

    MathSciNet  Google Scholar 

  15. Kwasnicki, M.: Ten equivalent definitions of the fractional Laplace operator. Fract. Cal. Appl. Anal. 20, 7–51 (2017). https://doi.org/10.1515/fca-2017-0002

    Article  MathSciNet  Google Scholar 

  16. Mehrez, K.: Paley–Wiener theorem for the Weinstein transform and applications. Integral Transform. Spec. Funct. 28(8), 616–628 (2017). https://doi.org/10.1080/10652469.2017.1334652

    Article  MathSciNet  Google Scholar 

  17. Mejjaoli, H.: Heat equations associated with Weinstein operator and applications. J. Funct. Spaces Appl. 2013, 1–13 (2013)

    MathSciNet  Google Scholar 

  18. Mejjaoli, H., Salem, A.O.A.: Weinstein Gabor transform and applications. Adv. Pure Math. 2, 203–210 (2012)

    Article  Google Scholar 

  19. Mejjaoli, H., Salhi, M.: Uncertainty principles for the Weinstein transform. Czechoslov. Math. J. 61, 941–974 (2011)

    Article  MathSciNet  Google Scholar 

  20. Mejjaoli, H., Trimèche, K.: On a mean value property associated with the Dunkl Laplacian operator and applications. Integral Transform. Spec. Funct. 12(3), 279–302 (2001)

    Article  MathSciNet  Google Scholar 

  21. Nefzi, W.: Riesz transforms for the Weinstein operator. Integral Transform. Spec. Funct. 28(10), 751–771 (2017). https://doi.org/10.1080/10652469.2017.1358713

    Article  MathSciNet  Google Scholar 

  22. Nefzi, W.: Fractional integrals for the Weinstein operator. Integral Transform. Spec. Funct. 31(11), 906–920 (2020). https://doi.org/10.1080/10652469.2020.1761803

    Article  MathSciNet  Google Scholar 

  23. Othmani, Y., Trimèche, K.: Real Paley–Wiener theorems associated with the Weinstein operator. Mediterr. J. Math. 3, 105–118 (2006)

    Article  MathSciNet  Google Scholar 

  24. Pizzetti, P.: On the average values taken by a function of points in space on the surface of a sphere. Rend. Circ. Mat. Palermo 27, 182–185 (1909)

    Google Scholar 

  25. Plessis, N.: An Introduction to Potential Theory, vol. 8. Oliver & Boyd, Edinburgh (1970)

    Google Scholar 

  26. Riesz, M.: Intégrales de Riemann-Liouville et potentiels. Acta Sci. Math. Szeged 9, 1–42 (1938)

    Google Scholar 

  27. Samko, S.G.: Hypersingular Integrals and Their Applications, Series Analytical Methods and Special Functions 5. Taylor & Francis, London, New York (2005)

    Google Scholar 

  28. Saoudi, A.: A variation of \( L^p \) uncertainty principles in Weinstein setting. Indian J. Pure Appl. Math. 51(4), 1697–1712 (2020)

    Article  MathSciNet  Google Scholar 

  29. Saoudi, A.: On the Weinstein–Wigner transform and Weinstein-Weyl transform. J. Pseudo Differ. Oper. Appl. 11, 1–14 (2020)

    Article  MathSciNet  Google Scholar 

  30. Saoudi, A., Bochra, N.: Boundedness and compactness of localization operators for Weinstein–Wiener transform. J. Pseudo Differ. Oper. Appl. 11, 675–702 (2020)

    Article  MathSciNet  Google Scholar 

  31. Trimèche, K.: Convergence des séries de Taylor généralisées au sens de Delsarte. C. R. Acad. Sci. Paris 281, 1015–1017 (1975)

    MathSciNet  Google Scholar 

  32. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  33. Weinstein, A.: Singular partial differential equations and their applications. In: Fluid Dynamics and Applied Mathematics, pp. 29–49 (1962)

Download references

Acknowledgements

We are grateful to anonymous referees for their valuable comments and suggestions that improved the presentation and the results of this paper.

Funding

The work of the first author is supported by the “Research Supporting Project number (RSPD2024R974), King Saud University, Riyadh, Saudi Arabia”.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding author

Correspondence to Fethi Bouzeffour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzeffour, F., Jedidi, W. Generalized Pizzetti’s formula for Weinstein operator and its applications. J. Pseudo-Differ. Oper. Appl. 15, 33 (2024). https://doi.org/10.1007/s11868-024-00602-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-024-00602-5

Keywords

Mathematics Subject Classification

Navigation