Skip to main content
Log in

Long time behavior of solutions for time-fractional pseudo-parabolic equations involving time-varying delays and superlinear nonlinearities

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

We study the long time behavior of solutions for time-fractional pseudo-parabolic equations involving time-varying delays and nonlinear pertubations, where the nonlinear term is allowed to have superlinear growth. Concerning the associated linear problem, we establish a variation-of-parameters formula of mild solutions and prove some regularity estimates of resolvent operators. In addition, thanks to local estimates on Hilbert scales, fixed point arguments and a new Halanay type inequality, we obtain some results on the global solvability, stability, dissipativity and the existence of decay solutions to our problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data used to support the current study are included within the article.

References

  1. Anh, N.T., Ke, T.D.: Decay integral solutions for neutral fractional differential equations with infinite delays. Math. Methods Appl. Sci. 38, 1601–1622 (2015)

    Article  MathSciNet  Google Scholar 

  2. Anh, N.T., Ke, T.D., Quan, N.N.: Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays. Discrete Contin. Dyn. Syst. Ser. B 21, 3637–3654 (2016)

    Article  MathSciNet  Google Scholar 

  3. Burlică, M.-D., Necula, M., Roşu, D., Vrabie, I.I.: Delay Differential Evolutions Subjected to Nonlocal Initial Conditions. Monographs and Research Notes in Mathematics. Chapman and Hall/CRC Press, Boca Raton (2016)

    Google Scholar 

  4. Cong, N.D., Tuan, H.T., Trinh, H.: On asymptotic properties of solutions to fractional differential equations. J. Math. Anal. Appl. 484, 123759 (2020)

    Article  MathSciNet  Google Scholar 

  5. Cong, N.D., Son, D.T., Siegmund, S., Tuan, H.T.: Linearized asymptotic stability for fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 39, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  6. Erneux, T.: Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3. Springer, New York (2009)

    Google Scholar 

  7. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer Monographs in Mathematics. Springer, Heidelberg (2014)

    Book  Google Scholar 

  8. Hien, L.V., Ke, T.D., Kinh, C.T.: Globally attracting solutions to impulsive fractional differential inclusions of Sobolev type. Acta Math. Sci. Ser. B (Engl. Ed.) 37, 1295–1318 (2017)

    MathSciNet  Google Scholar 

  9. Jin, L., Li, L., Fang, S.: The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation. Comput. Math. Appl. 73, 2221–2232 (2017)

    Article  MathSciNet  Google Scholar 

  10. Jin, B.: Fractional Differential Equations: An Approach via Fractional Derivatives. Springer, Berlin (2021)

    Book  Google Scholar 

  11. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in Banach spaces. In: de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin (2001)

  12. Ke, T.D., Thang, N.N., Thuy, L.T.P.: Regularity and stability analysis for a class of semilinear nonlocal differential equations in Hilbert spaces. J. Math. Anal. Appl. 483, 123655 (2020)

    Article  MathSciNet  Google Scholar 

  13. Ke, T.D., Thuy, L.T.P.: Dissipativity and stability for semilinear anomalous diffusion equations with delay. Math. Methods Appl. Sci. 43, 1–17 (2020)

    MathSciNet  Google Scholar 

  14. Ke, T.D., Lan, D.: Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects. J. Fixed Point Theory Appl. 19, 2185–2208 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  16. Lan, D., Phong, V.N.: Decay solutions to retarded fractional evolution inclusions with superlinear perturbations. Fixed Point Theory 23, 293–309 (2022)

    Article  MathSciNet  Google Scholar 

  17. Lian, W., Wang, J., Xu, R.: Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differ. Equ. 269, 4914–4959 (2020)

    Article  MathSciNet  Google Scholar 

  18. Lyubanova, A.S., Velisevich, A.V.: Inverse problems for the stationary and pseudoparabolic equations of diffusion. Appl. Anal. 98, 1997–2010 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lyubanova, A.S., Tani, A.: An inverse problem for pseudoparabolic equation of filtration: the stabilization. Appl. Anal. 92, 573–585 (2013)

    Article  MathSciNet  Google Scholar 

  20. Phong, V.N., Lan, D.: Finite-time attractivity of solutions for a class of fractional differential inclusions with finite delay. J. Pseudo-Differ. Oper. Appl. 12, 5 (2021)

    Article  MathSciNet  Google Scholar 

  21. Padron, V.: Effect of aggregation on population recovery modeled by a forward–backward pseudoparabolic equation. Trans. Am. Math. Soc. 356, 2739–2756 (2004)

    Article  MathSciNet  Google Scholar 

  22. Pollard, H.: The completely monotonic character of the Mittag–Leffler function \(E_{\alpha }(-x)\). Bull. Am. Math. Soc. 54, 1115–1116 (1948)

    Article  Google Scholar 

  23. Showalter, R.E., Ting, T.W.: Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1, 1–26 (1970)

    Article  MathSciNet  Google Scholar 

  24. Thang, N.N., Ke, T.D., Dac, N.V.: Stability analysis for nonlocal evolution equations involving infinite delays. J. Fixed Point Theory Appl. 25(1), 22 (2023)

    Article  MathSciNet  Google Scholar 

  25. Tuan, N.H., Tuan, N.A., Yang, C.: Global well-posedness for fractional Sobolev–Galpern type equations. Discrete Contin. Dyn. Syst. (2022)

  26. Tuan, N.H., Au, V.V., Xu, R.: Semilinear Caputo time-fractional pseudo-parabolic equations. Commun. Pure Appl. Anal. 20, 583–621 (2021)

    Article  MathSciNet  Google Scholar 

  27. Tuan, N.H., Au, V.V., Tri, V.V., O’Regan, D.: On the well-posedness of a nonlinear pseudo-parabolic equation. J. Fix. Point Theory Appl. 22, 77 (2020)

    Article  MathSciNet  Google Scholar 

  28. Tuan, H.T., Siegmund, S.: Stability of scalar nonlinear fractional differential equations with linearly dominated delay. Fract. Calc. Appl. Anal. 23, 250–267 (2020)

    Article  MathSciNet  Google Scholar 

  29. Tuan, H.T., Trinh, H.: A qualitative theory of time delay nonlinear fractional-order systems. SIAM J. Control. Optim. 58, 1491–1518 (2020)

    Article  MathSciNet  Google Scholar 

  30. Tuan, H.T., Thai, H.D., Garrappa, R.: An analysis of solutions to fractional neutral differential equations with delay. Commun. Nonlinear Sci. Numer. Simul. 100, 105854 (2021)

    Article  MathSciNet  Google Scholar 

  31. Tuan, T.V.: Existence and regularity in inverse source problem for fractional reaction–subdiffusion equation perturbed by locally Lipschitz sources. Evol. Equ. Control Theory 12(1), 336–361 (2023)

    Article  MathSciNet  Google Scholar 

  32. Ting, T.W.: Parabolic and pseudo-parabolic partial differential equations. J. Math. Soc. Jpn. 21, 440–453 (1969)

    MathSciNet  Google Scholar 

  33. Vergara, V., Zacher, R.: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM J. Math. Anal. 47(1), 210–239 (2015)

    Article  MathSciNet  Google Scholar 

  34. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Applied Mathematical Sciences, vol. 119. Springer, Berlin (1996)

    Book  Google Scholar 

  35. Xu, R., Su, J.: Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 264, 2732–2763 (2013)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

  37. Zhou, Y., Wang, R.N., Peng, L.: Topological Structure of the Solution Set for Evolution Inclusions. Springer, Singapore (2017)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DL and TVT wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Do Lan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, D., Van Tuan, T. Long time behavior of solutions for time-fractional pseudo-parabolic equations involving time-varying delays and superlinear nonlinearities. J. Pseudo-Differ. Oper. Appl. 14, 74 (2023). https://doi.org/10.1007/s11868-023-00569-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-023-00569-9

Keywords

Mathematics Subject Classification

Navigation