Skip to main content
Log in

A note on operating functions of modulation spaces

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

Let \(A^1_\beta ({{\textbf{T}}})\) denote the set of all Lebesgue integrable functions F on the torus \({\textbf{T}}\) such that \(\sum _{m \in {{\textbf{Z}}}} |{\widehat{F}}(m) |{ (1+ |m |) }^{\beta } < \infty \), where \(\{ {\widehat{F}}(m) \}_{m \in {{\textbf{Z}}}}\) denote the Fourier coefficients of F. We consider necessary and sufficient conditions for all functions \(F \in A^1_\beta ({{\textbf{T}}})\) to operate on all real-valued functions in the modulation spaces \(M^{p,q}_s({{\textbf{R}}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246, 366–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bényi, Á., Oh, T.: Modulation spaces, Wiener amalgam spaces, and Brownian motions. Adv. Math. 228, 2943–2981 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bényi, Á., Okoudjou, K.A.: Modulation spaces. With applications to pseudodifferential operators and nonlinear Schrödinger equations. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, (2020)

  4. Bhimani, D.G.: Composition operators on Wiener amalgam spaces. Nagoya Math. J. 240, 257–274 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhimani, D.G., Ratnakumar, P.-K.: Functions operating on modulation spaces and nonlinear dispersive equations. J. Funct. Anal. 270, 621–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourdaud, G., Moussai, M., Sickel, W.: Composition operators acting on Besov spaces on the real line. Ann. Mat. Pura Appl. 4(193), 1519–1554 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. In: M. Krishna, R. Radha and S. Thangavelu (Eds.), Wavelets and their applications, Chennai, India, Allied Publishers, New Delhi, 2003, 99-140, Updated version of a technical report, University of Vienna, (1983)

  8. Gröchenig, K.: Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc, Boston, MA (2001)

    MATH  Google Scholar 

  9. Hörmander, L.: The Analysis of Linear Partial Differential Operators. II. Differential operators with constant coefficients. Classics in Mathematics. Springer-Verlag, Berlin (2005)

    Book  MATH  Google Scholar 

  10. Kahane, J.-P.: Sur certaines classes de séries de Fourier absolument convergentes. J. Math. Pures Appl. 9(35), 249–259 (1956)

    MATH  Google Scholar 

  11. Kato, T., Sugimoto, M., Tomita, N.: Nonlinear operations on a class of modulation spaces. J. Funct. Anal. 278, 108447 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Katznelson, Y.: Sur les fonetions opérant sur l’algèbre des séries de Fourier absolument convergentes. C. R. Acad. Sci. Paris 247, 404–406 (1958)

    MathSciNet  MATH  Google Scholar 

  13. Kobayashi, M., Sato, E.: Operating functions on modulation and Wiener amalgam spaces. Nagoya Math. J. 230, 72–82 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kobayashi, M., Sato, E.: Operating functions on \(A^q_s({{ T }})\). J. Fourier Anal. Appl. 28, 42 (2022)

    Article  MATH  Google Scholar 

  15. Okoudjou, K.A.: A Beurling-Helson type theorem for modulation spaces. J. Funct. Spaces Appl. 7, 33–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reich, M., Sickel, W.: Multiplication and composition in weighted modulation spaces. Mathematical analysis, probability and applications-plenary lectures, 103–149, Springer Proc. Math. Stat., 177, Springer (2016)

  17. Rudin, W.: Fourier Analysis on Groups. Dover Publications, New York (2017)

    MATH  Google Scholar 

  18. Ruzhansky, M., Sugimoto, M., Wang, B.: Modulation spaces and nonlinear evolution equations. Evolution equations of hyperbolic and Schrödinger type, 267–283, Progr. Math., 301, Birkhäuser/Springer Basel AG, Basel (2012)

  19. Sugimoto, M., Tomita, N., Wang, B.: Remarks on nonlinear operations on modulation spaces. Integral Transforms Spec. Funct. 22, 351–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Toft, J.: Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal. 207, 399–429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, B., Zhao, L., Guo, B.: Isometric decomposition operators, function spaces \(E^\lambda _{p, q}\) and applications to nonlinear evolution equations. J. Funct. Anal. 233, 1–39 (2006)

    Article  MathSciNet  Google Scholar 

  22. Zygmund, A.: Trigonometric Series, vol. I. II. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 22K03328, 22K03331.

Author information

Authors and Affiliations

Authors

Contributions

Masaharu Kobayashi and Enji Sato wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Masaharu Kobayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

5. Appendix

5. Appendix

We can easily obtain an estimate for \(\Vert e^{inf } -1 \Vert _{M^{p,p}_s}\) instead of \(\Vert e^{inf} -1 \Vert _{M^{p,2}_s}\) by applying a method similar to the proofs of Lemmas 17 through 19. This gives an estimate

$$\begin{aligned} \Vert e^{inf } -1 \Vert _{M^{p,q}_s} \lesssim C_f |n |^{s+ \frac{1}{q} - \frac{1}{p} } \end{aligned}$$

for \(1<q<p<\infty \), \(p \ge 2\) and \(s>2\). The proof is left to the reader.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Sato, E. A note on operating functions of modulation spaces. J. Pseudo-Differ. Oper. Appl. 13, 61 (2022). https://doi.org/10.1007/s11868-022-00494-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-022-00494-3

Keywords

Mathematics Subject Classification

Navigation