1 Introduction

The aim of the paper is to establish existence and uniqueness results for the Cauchy–Neumann and Cauchy–Robin problems associated to a class of hyperbolic operators with double characteristics in presence of transition.

Let \(\varOmega = ]0, + \infty [ \times \varOmega _0\), where \(\varOmega _0\) is an open set of \({\mathbb {R}}^2\) with Lipschitz boundary. Let \(x=(x_0,x')\) where \(x'=(x_1,x_2)\), let \(\xi =(\xi _0, \xi ')\), where \(\xi '= (\xi _1, \xi _2)\). Let \(D'=( \partial _{x_1}, \beta ^2(x) \partial _{x_2})\) and let \(L'=(\partial _{x_1} - a_1(x), \beta ^2(x) \partial _{x_2} - a_2(x))\), where \(\beta (x) =x_0- \alpha (x')\), being \(\alpha \) a real function. Let \(n=(n_0,n')\) be the external normal versor to the boundary of \(\varOmega \), where \(n'=(n_1,n_2)\).

The mixed problems, we will study, are introduced in the sequel. Precisely, the Cauchy–Neumann problem is

$$\begin{aligned} {\left\{ \begin{array}{ll} Pu= f, \quad \mathrm{in} \ \varOmega , \\ u|_{\varOmega _0}=0, \ \frac{du}{dn}|_{\varOmega _0}=0, \ D'u \cdot n'|_{S}=0, \end{array}\right. } \end{aligned}$$
(1)

and the Cauchy–Robin problem is

$$\begin{aligned} {\left\{ \begin{array}{ll} Pu= f, \quad \mathrm{in} \ \varOmega , \\ u|_{\varOmega _0}=0, \ \frac{du}{dn}|_{\varOmega _0}=0, \ L'u \cdot n'|_{S}=0, \end{array}\right. } \end{aligned}$$
(2)

where \(S=]0, + \infty [ \times \partial \varOmega _0\) and

$$\begin{aligned} P=D^2_{x_0} - D^2_{x_1} - \beta ^2(x) D^2_{x_2} + \sum _{j=0}^2 a_j(x) D_{x_j} +b(x), \quad \mathrm{in} \ \varOmega , \end{aligned}$$
(3)

with coefficients belonging in \(C^{\infty }(\widetilde{\varOmega })\), where \(\widetilde{\varOmega }= [0, + \infty [ \times \widetilde{\varOmega }_0\), being \(\widetilde{\varOmega }_0\) an open set containing \(\varOmega _0\), \(\mathrm{Im} \, a_2(x)=(x_0-\alpha (x'))\widetilde{a}_2(x)\), where \(\widetilde{a}_2(x)\) is a real function and \(D_{x_j}= \dfrac{1}{i} \partial _{x_j}\), \(j=0,1,2\).

For every \(x'=(x_1,x_2)\) and \(\xi =(\xi _0, \xi ')\),

$$\begin{aligned} p(x_0, x', \xi ) = - \xi _0^2+ \xi ^2_1+ (x_0 - \alpha (x'))^2 \xi ^2_2 \end{aligned}$$

is the principal symbol of P,

$$\begin{aligned} \Sigma = \left\{ \rho = (x_0, x', \xi ) \in T^* \varOmega : \ \xi ' \ne 0, \ p(\rho ) =0, \ \nabla p(\rho ) =0 \right\} \end{aligned}$$

is the characteristic set and

$$\begin{aligned} F_p(\rho )=\frac{1}{2} \left( \begin{array}{cc} p''_{x\xi }(\rho ) &{} p''_{\xi \xi }(\rho ) \\ - p''_{x x}(\rho ) &{} - p''_{\xi x}(\rho ) \end{array} \right) , \quad \forall \rho \in \Sigma . \end{aligned}$$

is the fundamental matrix of P at \(\rho \). The spectrum of \(F_p(\rho )\), \(\mathrm{Spec}(F_p(\rho ))\), is very important to analyze the well-posedness of the mixed problems associated to P.

Hörmander proved (see [9]):

$$\begin{aligned} z \in \mathrm{Spec}(F_p(\rho )) \ \Leftrightarrow \ - z, \overline{z} \in \mathrm{Spec}(F_p(\rho )). \end{aligned}$$

We have three possible cases, see for instance [8]. There exists a positive real number \(\lambda \) such that \(\{ - \lambda , \lambda \} \subset \mathrm{Spec}(F_p(\rho ))\) and \(\mathrm{Spec}(F_p(\rho )) {\setminus } \{ - \lambda , \lambda \} \subset i {\mathbb {R}}\), the operator P is called effectively hyperbolic at \(\rho \). We introduce

$$\begin{aligned} \Sigma _+ = \left\{ \rho \in \Sigma : \ P \ \mathrm{is \ effectively \ hyperbolic \ at} \ \rho \right\} . \end{aligned}$$

Moreover, \(\mathrm{Spec}(F_p(\rho )) \subset i {\mathbb {R}}\) and in the Jordan normal form of \(F(\rho )\) corresponding to the eigenvalue 0, there are only Jordan blocks of dimension 2, namely \(\mathrm{Ker} F_p(\rho )^2 \cap \mathrm{Im} F_p(\rho )^2 = \{ 0\}\), the operator P is called non-effectively hyperbolic of type 1 at \(\rho \). We set

$$\begin{aligned} \Sigma _- = \left\{ \rho \in \Sigma : \ P \ \mathrm{is \ non{-}effectively \ hyperbolic \ of \ type} \ 1 \ \mathrm{at} \ \rho \right\} . \end{aligned}$$

Finally, \(\mathrm{Spec}(F_p(\rho )) \subset i {\mathbb {R}}\) and in the Jordan normal form of \(F(\rho )\) corresponding to the eigenvalue 0, there is only a Jordan blocks of dimension 4 and no block of dimension 3, namely \(\mathrm{Ker} F_p(\rho )^2 \cap \mathrm{Im} F_p(\rho )^2\) is 2-dimensional, the operator P is called non-effectively hyperbolic of type 2 at \(\rho \). We denote by

$$\begin{aligned} \Sigma _0 = \left\{ \rho \in \Sigma : \ P \ \mathrm{is \ non{-}effectively \ hyperbolic \ of \ type} \ 2 \ \mathrm{at} \ \rho \right\} . \end{aligned}$$

Obviously, it follows

$$\begin{aligned} \Sigma = \Sigma _- \sqcup \Sigma _0 \sqcup \Sigma _+. \end{aligned}$$

We say that we have a transition exactly if at least two among the above sets are nonempty.

In [7] the authors study the well posedness of the Cauchy problem associated to hyperbolic operators with douple characteristics in presence of transition in the cases in which \(\Sigma = \Sigma _0 \sqcup \Sigma _+\) or \(\Sigma = \Sigma _0 \sqcup \Sigma _-\). In [2], a global existence and uniqueness theorem for the Cauchy problem related to the class of hyperbolic operators with double characteristics

$$\begin{aligned} P=D^2_{x_0} - D^2_{x_1} - (x_0 + \lambda - \alpha (x_1))^2 D^2_{x_2}, \quad \lambda \ne 0, \end{aligned}$$

depending on the parameter \(\lambda \) in the half-space \({\mathbb {R}}^2 \times ]0, + \infty [\) is proved. In [4], the authors consider a mixed Cauchy-Dirichlet problem associated to the previous class of operators in a particular domain of \({\mathbb {R}}^3\), instead in the class, here studied, the coeffiecient \(\beta \) depends only on \(x_0\). In [3], a priori estimates for particular test functions useful for the study of a Cauchy-Dirichlet problem are established. In this paper, unlike [7], \(\Sigma = \Sigma _- \sqcup \Sigma _0 \sqcup \Sigma _+\) where all the sets \(\Sigma _-\), \(\Sigma _0\) and \(\Sigma _+\) can be nonempty on the same connected components of \(\Sigma \). Moreover, unlike [5], here some priori estimates for general test functions (not particular test functions as in [5]) useful for proving the existence of solutions to the mixed Cauchy–Neumann and Cauchy–Robin problems are obtained. The class of operators (3) has both the case in which \(F_p(\rho )\) has two distinct real eigenvalues and the case in which all the eigenvalues are purely imaginary numbers can occur (see [1, 2]). Precisely, if \(| \partial _{x_1} \alpha (x')|<1\), \(\beta \equiv 0\) and \(\xi _0= \xi _1=0\), then \(F_p(\rho )\) has two distint non-zero real eigenvalues. If \(| \partial _{x_1} \alpha (x')| > 1\), \(\beta \equiv 0\) and \(\xi _0= \xi _1=0\), \(F_p(\rho )\) has two non-zero imaginary eigenvalues. Summarizing, let \(\overline{\Sigma }\) be the set of points \(\rho =(x_0,x',\xi )\) of \(\Sigma \) such that \(\beta \equiv 0\) and \(\xi _0=\xi _1=0\). It results that \(\rho \in \Sigma _+\) if \(\rho \in \overline{\Sigma }\) and \(| \partial _{x_1} \alpha (x')|<1\), \(\rho \in \Sigma _-\) if \(\rho \in \overline{\Sigma }\) and \(| \partial _{x_1} \alpha (x')|>1\), and \(\rho \in \Sigma _0\) if \(\rho \in \overline{\Sigma }\) and \(| \partial _{x_1} \alpha (x')|=1\). In this paper, the special class of operators (3), we analyze, has transition from effectively hyperbolic to non-effectively hyperbolic. In [5] and [6], two classes more general of hyperbolic operators with double charateristics are investigated.

Let us introduce

$$\begin{aligned} \Gamma= & {} \left\{ x \in \overline{\varOmega }: \ \beta (x)=0 \right\} , \quad \widetilde{\Gamma } = \left\{ x \in \overline{\widetilde{\varOmega }}: \ \beta (x)=0 \right\} , \\ \Gamma '= & {} \left\{ x \in \Gamma : \ | \partial _{x_1} \alpha (x')| \ge 1 \right\} , \quad \widetilde{\Gamma }'= \left\{ x \in \widetilde{\Gamma }: \ | \partial _{x_1} \alpha (x')| \ge 1 \right\} , \\ \varOmega _0'= & {} \left\{ x' \in \varOmega _0: \ \alpha (x') \ge 0, \ | \partial _{x_1} \alpha (x')| \ge 1 \right\} , \\ \widetilde{\varOmega }_0'= & {} \left\{ x' \in \widetilde{\varOmega }_0: \ \alpha (x') \ge 0, \ | \partial _{x_1} \alpha (x')| \ge 1 \right\} , \\ S= & {} \partial \varOmega _0 \times [0,+ \infty [, \end{aligned}$$

furthermore \(g(x')= \dfrac{\alpha (x')}{\partial _{x_1} \alpha (x')}\), \(h(x')=1-\partial _{x_1} g(x')\), for every \(x' \in \varOmega _0'\).

We consider a quadratic matrix-function \(B= (b_{hk})_{h,k=0,1}\) whose elements are:

$$\begin{aligned} b_{00}(x)= & {} h(x') -2 \alpha (x') |\widetilde{a}_0(x)|, \quad \forall x \in \Gamma ', \\ b_{01}(x)= & {} b_{10}(x) = - g(x') \widetilde{a}_0(x) - \alpha (x') \widetilde{a}_1(x), \quad \forall x \in \Gamma ', \\ b_{11}(x)= & {} h(x') -2 |g(x') \widetilde{a}_1(x)|, \quad \forall x \in \Gamma ', \end{aligned}$$

where \(\widetilde{a}_0\) and \(\widetilde{a}_1\) are the imaginary parts of \(a_0\) and \(a_1\), respectively.

We suppose

  1. (i)

    \(h(x') \in [h_1, h_2]\), \(\forall x' \in \widetilde{\varOmega }_0'\), with \(0<h_1<h_2 < 4\);

  2. (ii)

    the matrix-function B is positive definite in \(\widetilde{\Gamma }'\), namely there exists \(M>0\) such that \(B(x') \eta \cdot \eta \ge M \Vert \eta \Vert ^2\), \(\forall \eta = (\eta _1, \eta _2) \ne (0,0)\), \(\forall x \in \widetilde{\Gamma }'\);

  3. (iii)

    the connected components of the curve \(S\cap \Gamma '\) lie in parallel planes to \(\varOmega _0\).

We observe that if \(\widetilde{a}_0 = \widetilde{a}_1 =0\), on \(\Gamma '\), assumption (ii) is satisfied.

The main result of the paper is the following existence and uniqueness theorem.

Theorem 1

Let \(f \in H_{loc}^{r}(\overline{\varOmega })\), with \(r \ge 2\). Let us suppose that assumptions (i), (ii) and (iii) hold. The Cauchy–Neumann problem (1) and Cauchy–Robin problem (2) admit a solution \(u \in H^{r}_{loc}(\overline{\varOmega })\).

Example 1

Let \(P= D_{x_0}^{2} - D_{x_1}^{2} - \beta ^2(x) D_{x_2}^{2} + a_0(x) D_{x_0} + \beta (x) (a_1(x) D_{x_1} + a_2(x) D_{x_2}) + b(x)\) be a hyperbolic operator in \(\varOmega = ]0, + \infty [ \times \varOmega _0\) where \(\beta (x)= x_0 - \dfrac{x_1^2+1}{x_2^2+4}\). It results that \(\partial _{x_1} \alpha (x')= \dfrac{2x_1}{x_2^2+4}\), \(g(x') = \dfrac{x_1^2+1}{2 x_1}\), \(h(x') = \dfrac{x_1^2+1}{2x_1^2}\), in \(\varOmega _0\). Assumption (i) is verified in \(\varOmega _0\). Assumption (ii) holds if \(\mathrm{Im} \, |a_0(x)| \le \dfrac{1}{2x_1^2}\) in \(\Gamma '\). Assumption (iii) is fulfilled if \(\Gamma '\) is constituited by arcs of hyperboles of type \(x_1^2+1=a(x_2^2+4)\) (\(4a>1\)). For example if \(\varOmega _0 = \left\{ x' \in {\mathbb {R}}^2: \ x_1^2+1 \le a(x_2^2 +4), \ x_2^2 \le \gamma (x_1) \right\} \), with \(a>2\) and \(\gamma \in C^1({\mathbb {R}})\) such that \(\gamma (x_1) \ge 4(a-1)\), assumptions (i) and (iii) are satisfied and assumption (ii) is verified if \(|\mathrm{Im} \, a_0| < \dfrac{1}{8a^2}\). Furthermore we have a transition on \(\Sigma \).

Example 2

Let \(P= D_{x_0}^{2} - D_{x_1}^{2} - \beta ^2(x) D_{x_2}^{2} +b(x)\) be a hyperbolic operator in \(\varOmega = ]0, + \infty [ \times \varOmega _0\) with \(\beta (x) = x_0 - (x_1+x_2)^2\). We have \(\partial _{x_1} \alpha (x') =2x_1\), \(g(x')= \dfrac{x^2_1+x^2_2}{2 x_1}\), \(h(x')= \dfrac{x_1^2+x_2^2}{2x_1}\), in \(\varOmega _0\). Assumption (i) is verified if \(|x_2| \le \dfrac{7}{4}\) and \(|x_1| \ge \dfrac{1}{2}\). Assumption (ii) is always satisfied. Assumption (iii) holds if \(\Gamma '\) is constituted by arcs of circumferences with center (0, 0). For example if \(\varOmega _0\) is the circle in \({\mathbb {R}}^2\) with center (0, 0) and radius r with \(\dfrac{1}{2}< r< 2\), assumptions (i), (ii) and (iii) are fulfilled and we have a transition on \(\Sigma \).

The paper is organized as follows. In Sect. 2 some preliminary notations and definitions are presented. Section 3 is devoted to a priori estimates near the boundary \(\varOmega _0\). In Sect. 4 a priori estimates away from \(\varOmega _0\) are established. Section 5 concerns estimates in Sobolev spaces making use of the pseudodifferential operator theory. Section 6 deals with some global estimates in \(\varOmega \). In Sect. 7 existence and regularity results for solutions to the mixed Cauchy–Neumann and Cauchy–Robin problems are proved. At last, in Sect. 8, a uniqueness result for the mixed problems is obtained.

2 Notations and preliminaries

Let \(\alpha =(\alpha _0, \alpha _1, \alpha _2) \in {\mathbb {N}}^3_0\). Let \(\partial ^{\alpha }\) be the derivative of order \(|\alpha |\), let \(\partial ^{h}_{x_j}\) be the derivative of order h with respect to \(x_j\) and let \(\partial ^{h}_{x_j, x_p}\) be the derivative of order h with respect to \(x_j\) and \(x_p\).

We indicate the \(L^2\)-scalar product, the \(L^2\)-norm and the \(H^{r}\)-norm by \((\cdot , \cdot )\), \(\Vert \cdot \Vert \) and \(\Vert \cdot \Vert _{H^{r}}\) (\(r \in {{\mathbb {N}}}_0\)), respectively.

Let \(C_0^{\infty }(\overline{\varOmega })\) be the space of the restrictions to \(\overline{\varOmega }\) of functions belonging to \(C^{\infty }_0({\mathbb {R}}^3)\). For each \(K \subseteq \overline{\varOmega }\) compact set, let \(C^{\infty }_0 (K)\) be the set of functions \(\varphi \in C^{\infty }_0 (\overline{\varOmega })\) having support contained in K. Set \(\varOmega _k=[0,k[ \times \varOmega _0\), with \(k>0\), let

$$\begin{aligned} C^{\infty }_0(\overline{\varOmega }_k) = \left\{ u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq [0,k[ \times \overline{\varOmega }_0 \right\} . \end{aligned}$$

Let \(S({\mathbb {R}}^3)\) be the space of rapidly decreasing functions. In particular, let \(S(\overline{\varOmega })\) be the space of the restrictions to \(\overline{\varOmega }\) of functions belonging to \(S({\mathbb {R}}^3)\).

Fixed \(s \in {\mathbb {R}}\), we consider the following norm

$$\begin{aligned}&\Vert u \Vert ^2_{H^{0,s}} = \frac{1}{(2 \pi )^2} \int _0^{+ \infty } dx_0 \int _{{\mathbb {R}}^2} (1+|\xi '|^2)^{s} | \widehat{u}(x_0, \xi ')|^2 d\xi ', \\&\qquad \qquad \quad \ \forall u \in C^{\infty }_{0}(\overline{\varOmega }): \ \mathrm{supp} \ u \subseteq [0, + \infty [ \times \varOmega _0, \end{aligned}$$

where the Fourier transform is computed only with respect to the variable \(x'\). Let us introduce the pseudodifferential operator \(A_s: C^{\infty }_0(\varOmega ) \rightarrow C^{\infty }(\varOmega )\) given by

$$\begin{aligned}&A_s u= \frac{1}{(2 \pi )^2} \int _{{\mathbb {R}}^2} e^{i x' \cdot \xi '} (1+|\xi '|^2)^{\frac{s}{2}} \widehat{u}(x_0, \xi ') d\xi ',\\&\quad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \ u \subseteq [0, + \infty [ \times \varOmega _0. \end{aligned}$$

For every \(\varphi (x') \in C^{\infty }_0(\varOmega _0)\), the operator \(\varphi A_s u\) extends as a linear continuous operator from \(H^{0,r}_{comp.}(\varOmega )\) into \(H^{0,r-s}_{loc}(\varOmega )\), where \(r,s \in {\mathbb {R}}\). If \(\mathrm{supp} \ \varphi \subseteq \varOmega _0 {\setminus } \mathrm{supp} \, u\), then \(\varphi A_s u\) is a regularizing operator with respect to the variable \(x'\). It results

$$\begin{aligned} \Vert \varphi A_s u \Vert _{H^{0,r}} \le c \Vert u \Vert _{H^{0,r'}}, \quad \forall r,r' \in {\mathbb {R}}, \ u \in C^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq [0, + \infty [ \times \varOmega _0. \end{aligned}$$

We note that the norms \(\Vert u \Vert _{H^{0,s}(\varOmega )}\) and \(\Vert A_s u \Vert _{L^2(\varOmega )}\) are equivalent for any \(s \in {\mathbb {R}}\). Moreover, let \(H^{0,s}(\varOmega _k)\) be the space of \(u \in H^{0,s}(\varOmega _k)\) such that \(\mathrm{supp} \, u \subseteq \varOmega _k\).

Let \(s \in {\mathbb {R}}\) and \(p \ge 0\). Let \(H^{p,s}({\mathbb {R}}^3)\) be the space of all the distributions on \({\mathbb {R}}^3\) such that

$$\begin{aligned} \Vert u \Vert ^2_{H^{p,s}({\mathbb {R}}^3)} = \frac{1}{(2 \pi )^2} \sum _{|h| \le p} \int _{{\mathbb {R}}^3} (1+|\xi '|^2)^{s} | \partial ^h_{x_0} \widehat{u}(x_0, \xi ')|^2 dx_0 d\xi ' < + \infty . \end{aligned}$$

Let \(H^{p,s}(\varOmega )\) be the space of all the restrictions to \(\varOmega \) of elements of \(H^{p,s}({\mathbb {R}}^3)\) endowed with the norm

$$\begin{aligned} \Vert u \Vert _{H^{p,s}(\varOmega )} = \inf _{{\begin{array}{c} U \in H^{p,s}({\mathbb {R}}^3) \\ U|_{\varOmega } =u \end{array}}} \Vert U \Vert _{H^{p,s}({\mathbb {R}}^3)}. \end{aligned}$$

Analogously we can define the space \(H^{p,s}(\varOmega _k)\).

Finally, let us consider the transposed operator \(\, ^t P\) given by:

$$\begin{aligned} {}^{t}P= & {} - \partial _{x_0}^2 + \partial _{x_1}^2 + (x_0-\alpha (x'))^2 \partial ^2_{x_2} - 4 (x_0-\alpha (x')) (\partial _{x_2} \alpha ) \partial _{x_2} \\&- \frac{1}{i} \sum _{j=0}^2 a_j(x) \partial _{x_j} - \frac{1}{i} \sum _{j=0}^2 \partial _{x_j} a_j(x) - 2 (\partial _{x_2} \alpha )^2 +b(x). \end{aligned}$$

3 A priori estimates near the boundary \(\varOmega _0\)

We enunciate the following preliminary result which synthesizes Lemmas 3.1 and 3.2 proved in [5].

Lemma 1

Let \(u \in S(\overline{\varOmega })\) and let \(p, \alpha _0, \alpha _1, \alpha _2 \in {\mathbb {N}}_0\). Then

$$\begin{aligned} \Vert x_0^{\frac{p}{2}} \partial ^{\alpha _0, \alpha _1, \alpha _2} u \Vert \le \frac{2}{p+1} \Vert x_0^{\frac{p+2}{2}} \partial ^{\alpha _0+1, \alpha _1, \alpha _2} u \Vert \end{aligned}$$
(4)

and

$$\begin{aligned} \int _{\varOmega _0} |u(0,x')|^2 dx' \le 2 \Vert u \Vert \Vert \partial _{x_0} u \Vert . \end{aligned}$$

The proof of the following preliminary result is analogous to the one of Lemma 3.3 in [5] with some modification, therefore for reader’s convenience we write it. As in Lemma 3.3 in [5], let us consider the set

$$\begin{aligned} I_{k, \delta } = \left\{ x \in \overline{\varOmega }: \ x_0 < k, \ |x_0 - \alpha (x')| > \delta \right\} , \end{aligned}$$

with \(k, \delta \) positive and small enough.

Lemma 2

For every \(\varepsilon , \delta >0\), there exists \(k>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \ ^{t} Pu \Vert , \\&\qquad \ \, \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \ u \subseteq I_{k, \delta }, \ D'u \cdot n'|_S=0. \end{aligned}$$

Proof

Let us denote the principal part of \(^{t}P\) by \(^{t}P_2\), the part of the first order of \(^{t}P\) by \(^{t}P_1\) and the part of the zero order of \(^{t}P\) by \(^{t}P_0\).

Integrating by parts and taking into account the boundary conditions, we obtain

$$\begin{aligned}&(e^{\tau x_0} \partial _{x_0} u, \ ^{t} P_2u) + ( \ ^{t}P_2 u, e^{\tau x_0} \partial _{x_0} u) \nonumber \\&\quad = 2(e^{\tau x_0} \partial _{x_0} u(x), \ ^{t}P_2u) \nonumber \\&\quad = \tau \Vert e^{\frac{1}{2} \tau x_0} \partial _{x_0} u\Vert ^2 + \tau \Vert e^{\frac{1}{2} \tau x_0} \partial _{x_1} u\Vert ^2 + \tau \Vert e^{\frac{1}{2} \tau x_0} (x_0 -\alpha (x')) \partial _{x_2} u\Vert ^2 \nonumber \\&\quad \quad +2 \left( e^{\tau x_0} ( x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_2} u \right) \nonumber \\&\quad \quad + 4 \left( e^{\tau x_0} \partial _{x_0} u, ( x_0 - \alpha (x')) \partial _{x_2} \alpha \partial _{x_2} u \right) \nonumber \\&\quad \quad + 2 \int _{S} e^{\tau x_0} \partial _{x_1} u \cdot n_1 \partial _{x_0} u d\sigma + 2 \int _{S} e^{\tau x_0} \beta ^2(x) \partial _{x_2} u \cdot n_2 \partial _{x_0} u d\sigma \nonumber \\&\quad \quad + \int _{\varOmega _0} (\partial _{x_0} u)^2 dx' + \int _{\varOmega _0} (\partial _{x_1} u)^2 dx' + \int _{\varOmega _0} ((x_0 - \alpha (x')) \partial _{x_2}u)^2 dx' \nonumber \\&\quad \ge \tau \Vert e^{\frac{1}{2} \tau x_0} \partial _{x_0} u\Vert ^2 + \tau \Vert e^{\frac{1}{2} \tau x_0} \partial _{x_1} u\Vert ^2 + \tau \Vert e^{\frac{1}{2} \tau x_0} (x_0-\alpha (x')) \partial _{x_2} u\Vert ^2 \nonumber \\&\quad \quad - \frac{2}{\delta } \Vert e^{\frac{1}{2} \tau x_0} (x_0-\alpha (x')) \partial _{x_2} u \Vert ^2 -2 \Vert e^{\frac{1}{2} \tau x_0} \partial _{x_0} u \Vert ^2 \nonumber \\&\quad \quad - 2 \Vert e^{\frac{1}{2} \tau x_0} |\partial _{x_2} \alpha (x')|^{\frac{1}{2}} (x_0-\alpha (x')) \partial _{x_2} u \Vert ^2,\nonumber \\&\quad \quad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq I_{k, \delta }, \ D'u \cdot n'|_S=0. \end{aligned}$$
(5)

Moreover, we have

$$\begin{aligned}&(e^{\tau x_0} \partial _{x_0} u, \, ^{t}(P-P_2)u) + (\, ^{t}(P-P_2)u, e^{\tau x_0} \partial _{x_0} u) \nonumber \\&\quad \ge -c \big ( \Vert e^{\frac{1}{2} \tau x_0} \partial _{x_0} u\Vert ^2 - \Vert e^{\frac{1}{2} \tau x_0} \partial _{x_1} u\Vert ^2 - \Vert e^{\frac{1}{2} \tau x_0} (x_0-\alpha (x')) \partial _{x_2} u\Vert ^2 \nonumber \\&\qquad + \Vert e^{\frac{1}{2} \tau x_0} u \Vert \big ). \end{aligned}$$
(6)

Adding (5) and (6) and applying Lemma 1, it results, for \(\frac{1}{2} \tau x_0 < 1\),

$$\begin{aligned}&(e^{\tau x_0} \partial _{x_0} u, \ ^{t} Pu) + ( \ ^{t}P u, e^{\tau x_0} \partial _{x_0} u) \nonumber \\&\quad \ge \tau \left( \Vert \partial _{x_0} u\Vert ^2 + \Vert \partial _{x_1} u\Vert ^2 + \Vert (x_0-\alpha (x')) \partial _{x_2} u\Vert ^2 \right) - c \Big ( \dfrac{1}{\delta } \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 \nonumber \\&\quad \quad + \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert ^2 \Big ). \end{aligned}$$
(7)

Making use of (7) and choosing \(x_0< \dfrac{1}{\tau }\), we have

$$\begin{aligned}&\Vert \partial _{x_0} u\Vert ^2 + \Vert \partial _{x_1} u\Vert ^2 + \Vert (x_0-\alpha (x')) \partial _{x_2} u\Vert ^2 \nonumber \\&\quad \le \frac{1}{\tau } \left\| \ ^{t} Pu \right\| \Vert \partial _{x_0} u \Vert + \frac{c}{\tau \delta } \Vert (x_0-\alpha (x')) \partial _{x_2} u \Vert ^2 + \frac{c}{\tau } \Vert \partial _{x_0} u \Vert ^2 \nonumber \\&\quad \quad + \frac{c}{\tau } \Vert (x_0-\alpha (x')) \partial _{x_2} u \Vert ^2 + \frac{c}{\tau } \Vert \partial _{x_1} u \Vert ^2 + \frac{c}{\tau } \Vert u \Vert ^2. \end{aligned}$$
(8)

Taking into account Lemma 1 and considering \(\tau \) large enough, the claim is archieved. \(\square \)

Now, we establish the following result.

Theorem 2

Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every \(\varepsilon >0\), there exists \(k>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \ ^{t} Pu\Vert , \\&\, \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _k= [0,k[ \times \overline{\varOmega }_0, \ D'u \cdot n'|_S=0. \end{aligned}$$

Proof

If \(\Gamma \cap \varOmega _0 = \emptyset \), we are able to use Lemma 2. Hence, the claim is proved. If \(\Gamma \cap \varOmega _0 \ne \emptyset \), we distinguish two regions. More precisely, for every \(\dfrac{4}{5}< \eta < 1\), let

$$\begin{aligned} \varOmega _{k,\eta } = \left\{ x \in \overline{\varOmega }: \ x_0 \in [0,k[, \ (1-\eta ) \alpha (x') \le x_0 \le \left( \frac{1}{5} + \eta \right) \alpha (x') \right\} \end{aligned}$$

and let \(\varOmega _k {\setminus } \varOmega _{k,\eta }\). Then, let us set

$$\begin{aligned} \varOmega _{k,\eta }' = \left\{ x \in \varOmega _{k,\eta }: \ | \partial _{x_1} \alpha (x')| \ge 1 \right\} , \quad \varOmega _{k,\eta , \eta '}' = \left\{ x \in \varOmega _{k,\eta }: \ | \partial _{x_1} \alpha (x')| \ge 1 - \eta ' \right\} . \end{aligned}$$

Evidently \(\varOmega _{k,\eta , \eta '}' \supseteq \varOmega _{k,\eta }'\). Moreover, we choose \(k, \eta \) and \(\eta '\) such that assumptions (i) and (ii) are satisfied. Let us consider a function \(u \in C_0^{\infty }(\overline{\varOmega })\) with \(\mathrm{supp} \, u \subseteq \varOmega _{k,\eta , \eta '}'\) and \(D'u \cdot n'|_S = 0\). Let us remark that \(\varOmega _{k,\eta } \cap \varOmega _0\) has measure zero in \({\mathbb {R}}^2\). Moreover, \(\varOmega _{k,\eta } \cap S\) is empty or has measure zero in \({\mathbb {R}}^2\), for k small enough. Let us consider the inner products:

$$\begin{aligned} ( \, ^{t}Pu, Au) + (Au, \, ^{t} Pu), \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{k,\eta , \eta '}', \ D'u \cdot n'|_S=0, \end{aligned}$$

where \(Au = x_0 \partial _{x_0}u + g(x') \partial _{x_1}u\). It results

$$\begin{aligned} ( \, ^{t}Pu, Au) + (Au, \, ^{t} Pu)= & {} (\, ^{t}P_2u, Au) + (Au, \, ^{t}P_2u) +(\, ^{t}P_1u, Au) \nonumber \\&+ (Au,\, ^{t} P_1u) + (\, ^{t}P_0u, Au) + (Au,\, ^{t} P_0u), \nonumber \\&\forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{k,\eta , \eta '}', \ D'u \cdot n'|_S=0.\nonumber \\ \end{aligned}$$
(9)

Integrating by parts, for every \(u \in C_0^{\infty }(\overline{\varOmega })\) such that \(\mathrm{supp} \, u \subseteq \varOmega _{k,\eta , \eta '}'\), and \(D'u \cdot n'|_S=0\), we have

$$\begin{aligned}&(\, ^{t}P_2u, Au) + (Au, \, ^{t}P_2u) \\&\quad = 2 (\, ^{t}P_2u, Au) \\&\quad = 2 ( \, ^{t}P_2u, x_0 \partial _{x_0} u) + 2 (\, ^{t} P_2u, g(x') \partial _{x_1} u) \\&\quad = (\partial _{x_0} u, \partial _{x_0} u) + (\partial _{x_1} u, \partial _{x_1} u) + \left( (x_0 - \alpha (x'))^2 \partial _{x_2} u, \partial _{x_2} u \right) \\&\quad \quad + 2 \left( (x_0- \alpha (x')) x_0 \partial _{x_2}u, \partial _{x_2}u \right) + 4 \left( (x_0-\alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, x_0 \partial _{x_0} u \right) \\&\quad \quad - (\partial _{x_0} u, \partial _{x_1} g(x') \partial _{x_0}u) - (\partial _{x_1} g(x') \partial _{x_1} u, \partial _{x_1} u) \\&\quad \quad + 4 ((x_0-\alpha (x')) \partial _{x_2} \alpha (x') g(x') \partial _{x_2} u, \partial _{x_1}u) \\&\quad \quad - 2 \left( (x_0-\alpha (x')^2 \partial _{x_2} g(x') \partial _{x_2}u, \partial _{x_1} u \right) \\&\quad \quad + \left( (x_0 -\alpha (x'))^2 \partial _{x_1} g(x') \partial _{x_2}u, \partial _{x_2}u \right) \\&\quad \quad -2 \left( (x_0 - \alpha (x'))^2 \partial _{x_1} \alpha (x') g(x') \partial _{x_2}u, \partial _{x_2} u \right) . \end{aligned}$$

From which, it follows

$$\begin{aligned}&2 (\, ^{t}P_2u,Au) \nonumber \\&\quad = \Vert h^{\frac{1}{2}}(x') \partial _{x_0} u \Vert ^2 + \Vert h^{\frac{1}{2}}(x') \partial _{x_1} u \Vert ^2 + \Vert (4- h(x'))^{\frac{1}{2}} \left( x_0-\alpha (x')\right) \partial _{x_2} u \Vert ^2 \nonumber \\&\quad \quad + 4 \left( (x_0-\alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, x_0 \partial _{x_0}u\right) \nonumber \\&\quad \quad + 4 \left( (x_0-\alpha (x')) \partial _{x_2} \alpha (x') g(x') \partial _{x_1} u, \partial _{x_2} u \right) \nonumber \\&\quad \quad - 24 \left( (x_0-\alpha (x'))^2 \partial _{x_2} g(x') \partial _{x_2} u, \partial _{x_1} u \right) , \end{aligned}$$
(10)

since we used that the boundary integrals are zero because the set \(\varOmega _{k,\eta ,\eta '}' \cap \partial \varOmega \) has zero measure.

Let us consider

$$\begin{aligned}&(\, ^{t}P_1u,Au) + (Au, \, ^t P_1u) \nonumber \\&\quad = -8 \left( (x_0-\alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, x_0 \partial _{x_0}u +g(x') \partial _{x_1} u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_0(x) \partial _{x_0} u + \widetilde{a}_1(x) \partial _{x_1} u + (x_0 - \alpha (x')) \widetilde{a}_2(x) \partial _{x_2} u, x_0 \partial _{x_0} u + g(x') \partial _{x_1} u \right) \nonumber \\&\quad = -8 \left( (x_0-\alpha (x'))^2 \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad -8 \left( (x_0-\alpha (x')) \alpha (x') \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad -8 \left( (x_0-\alpha (x')) \partial _{x_2} \alpha (x') g(x') \partial _{x_2} u, \partial _{x_1}u \right) \nonumber \\&\quad \quad -2 \left( (x_0-\alpha (x')) \widetilde{a}_0(x) \partial _{x_0} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_0(x) \alpha (x') \partial _{x_0} u, \partial _{x_0}u \right) -2 \left( \widetilde{a}_0(x) g(x') \partial _{x_0} u, \partial _{x_1}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_1(x) (x_0 - \alpha (x')) \partial _{x_1} u, \partial _{x_0}u \right) - 2 \left( \widetilde{a}_1(x) \alpha (x') \partial _{x_1} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_1(x) g(x') \partial _{x_1} u, \partial _{x_1}u \right) -2 \left( \widetilde{a}_2(x) (x_0-\alpha (x'))^2 \partial _{x_2} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_2(x) (x_0- \alpha (x')) \alpha (x') \partial _{x_2} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad -2 \left( \widetilde{a}_2(x) (x_0-\alpha (x')) g(x') \partial _{x_2} u, \partial _{x_1}u \right) . \end{aligned}$$
(11)

Making use of assumptions (i) and (ii), it follows

$$\begin{aligned}&\Vert h^{\frac{1}{2}}(x') \partial _{x_0} u \Vert ^2 + \Vert h^{\frac{1}{2}}(x') \partial _{x_1} u \Vert ^2 + \Vert (4-h(x'))^{\frac{1}{2}} (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_0(x) \alpha (x') \partial _{x_0} u, \partial _{x_0}u \right) -2 \left( \widetilde{a}_0(x) g(x') \partial _{x_1} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_1(x) \alpha (x') \partial _{x_1} u, \partial _{x_0}u \right) - 2 \left( \widetilde{a}_1(x) g(x') \partial _{x_1} u, \partial _{x_1}u \right) \nonumber \\&\quad \ge L \left( \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 \right) + (4-h_2) \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2, \nonumber \\&\quad \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{k,\eta ,\eta '}', \ D'u \cdot n'|_S=0. \end{aligned}$$
(12)

Moreover, we remark that the functions \(\alpha , g, \beta \) are zero on \(\varOmega \cap \Gamma \). As a consequence, we can choose k small enough and an appropriate \(\eta \) such that (12) holds and it results

$$\begin{aligned}&4 \left( (x_0 - \alpha (x'))^2 \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0}u \right) + 4 \left( (x_0 - \alpha (x')) \partial _{x_2} \alpha (x') g(x') \partial _{x_1} u, \partial _{x_2}u \right) \nonumber \\&\quad \quad + 4 \left( (x_0 - \alpha (x')) \alpha (x') \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad -2 \left( (x_0 - \alpha (x')) \partial _{x_2} \alpha (x') g(x') \partial _{x_2} u, \partial _{x_1}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_0(x) (x_0 - \alpha (x')) \partial _{x_0} u, \partial _{x_0}u \right) -2 \left( \widetilde{a}_1(x) (x_0 - \alpha (x')) \partial _{x_1} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_2(x) (x_0 - \alpha (x'))^2 \partial _{x_2} u, \partial _{x_0}u \right) -2 \left( \widetilde{a}_2(x) (x_0 - \alpha (x')) \alpha (x') \partial _{x_2} u, \partial _{x_0}u \right) \nonumber \\&\quad \quad - 2 \left( \widetilde{a}_2(x) (x_0 - \alpha (x')) g(x') \partial _{x_2} u, \partial _{x_1}u \right) \nonumber \\&\quad \ge - \delta \left( \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 \right) , \end{aligned}$$
(13)

with \(\delta < \min (L,4-h_2)\). Adding (9), (10), (11) and taking into account (13), we have

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2\\&\quad \le c |(\, ^tPu, Au) + (Au, \, ^tPu) | \\&\quad \le c \Big ( \Vert x_0^{\frac{1}{2}} \, ^t Pu \Vert \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert \\&\quad + \Vert g^{\frac{1}{2}}(x') \, ^tPu \Vert + \Vert g^{\frac{1}{2}}(x') \partial _{x_1} u \Vert \Big ). \end{aligned}$$

For k small enough and an appropriate \(\eta \), taking into account the previous inequality and Lemma 1, we obtain

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, ^t Pu \Vert , \nonumber \\&\, \qquad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{k,\eta ,\eta '}', \ D'u \cdot n'|_S=0, \end{aligned}$$
(14)

with \(ck < \varepsilon \) and \(c|g(x')| < \varepsilon \) in \(\varOmega _{k,\eta ,\eta '}'\).

Now, we consider \(\mathrm{supp} \, u \subseteq \varOmega _{k,\eta } {\setminus } \overline{\varOmega }_{k,\eta ,\eta '}'\) and we remind that it results \(|\partial _{x_1} \alpha (x')| <1\) in \(\varOmega _{k,\eta } {\setminus } \overline{\varOmega }_{k,\eta ,\eta '}'\). Integrating by parts, we obtain

$$\begin{aligned}&( \, ^t Pu, x_0 \partial _{x_0} u) + (x_0 \partial _{x_0} u, \, ^t Pu) \\&\quad = \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 + 2 (x_0 (x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_2} u) \\&\quad \quad + 4 ((x_0 - \alpha (x')) \partial _{x_2} \alpha (x'), x_0 \partial _{x_0} u) + ( \, {{}^{t}}P_1 u, x_0 \partial _{x_0} u) + ( x_0 \partial _{x_0} u, \, ^t P_1u) \\&\quad \quad + ( \, {{}^{t}}P_0 u, x_0 \partial _{x_0} u) + ( x_0 \partial _{x_0} u, \, ^t P_0u), \\&\quad \quad \forall u \in C_0^{\infty }(\varOmega _{k,\eta } {\setminus } \overline{\varOmega }_{k,\eta ,\eta '}'): \ D'u \cdot n'|_S=0. \end{aligned}$$

Making use of the previous inequality for k small enough and Lemma 1, it follows

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 \nonumber \\&\qquad \le \varepsilon \Vert \, ^tPu \Vert ^2 + \varepsilon \Vert (x_0 - \alpha (x'))^{\frac{1}{2}} \partial _{x_2} u \Vert ^2. \end{aligned}$$
(15)

In order to estimate \(\Vert (x_0 - \alpha (x'))^{\frac{1}{2}} \partial _{x_2} u \Vert ^2\), we consider the inner products \((\partial _{x_0} u, \, ^t Pu) + ( \, ^t Pu, \partial _{x_0} u)\) and integrate by parts in the principal part for \(x_0 \le \alpha (x')\) and, then, for \(x_0 \ge \alpha (x')\). In particular, for \(x_0 \le \alpha (x')\), it results

$$\begin{aligned}&- ((x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_2} u) + \int _{\Gamma } ((\partial _{x_0} u)^2 + 2 \partial _{x_1} \alpha (x') \partial _{x_0} u \partial _{x_1} u + (\partial _{x_1} u)^2 ) d \sigma \nonumber \\&\quad \quad - 4 ((x_0 - \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u) \nonumber \\&\quad = - ( \, ^t (P-P_2) u, \partial _{x_0} u) - (\partial _{x_0} u, \, ^t (P-P_2) u) \nonumber \\&\quad \quad + (\, ^t Pu, \partial _{x_0} u) + ( \partial _{x_0} u, \, ^t Pu), \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{k,\eta } {\setminus } \varOmega _{k,\eta ,\eta '}'.\nonumber \\ \end{aligned}$$
(16)

Moreover, for \(x_0 \ge \alpha (x')\), we have

$$\begin{aligned}&- ((x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_2} u) + \int _{\Gamma } ((\partial _{x_0} u)^2 + 2 \partial _{x_1} \alpha (x') \partial _{x_0} u \partial _{x_1} u + (\partial _{x_1} u)^2 ) d \sigma \nonumber \\&\quad \quad - 4 ((x_0 - \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u) \nonumber \\&\quad = - ( \, ^t (P-P_2) u, \partial _{x_0} u) - (\partial _{x_0} u, \, ^t (P-P_2) u) + (\, ^t Pu, \partial _{x_0} u) \nonumber \\&\qquad + ( \partial _{x_0} u, \, ^t Pu), \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{k,\eta } {\setminus } \varOmega _{k,\eta ,\eta '}'. \end{aligned}$$
(17)

Adding (16) and (17), and taking into account that \(|\partial _{x_1} \alpha (x')| < 1\) in the considered part, we get

$$\begin{aligned}&\Vert (x_0- \alpha (x'))^{\frac{1}{2}} \partial _{x_2} u \Vert ^2 \nonumber \\&\qquad \le c ( \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 + \Vert \, ^t Pu \Vert ^2 ). \end{aligned}$$
(18)

Making use of (18), (15) and Lemma 1, for k small enough and, hence, \(\varepsilon \) small enough, it follows

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 \le \varepsilon \Vert \, ^t Pu \Vert ^2,\nonumber \\&\forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{k. \eta } {\setminus } \varOmega _{k,\eta , \eta '}', \ D'u \cdot n'|_S=0. \end{aligned}$$
(19)

Let us consider \(u \in C_0^{\infty }(\overline{\varOmega })\) such that \(\mathrm{supp} \, u \subseteq \varOmega _k {\setminus } \overline{\varOmega }_{k, \eta }\) and compute the following inner products

$$\begin{aligned}&( \, ^t Pu, x_0 \partial _{x_0} u) + (x_0 \partial _{x_0} u, \, ^t Pu) \nonumber \\&\quad = \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \frac{1}{2} \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 \nonumber \\&\quad \quad + \left( \left( \frac{1}{2} (x_0- \alpha (x'))^2 + 2 x_0 (x_0 - \alpha (x')) \right) \partial _{x_2} u, \partial _{x_2} u \right) \nonumber \\&\quad \quad + 2 \int _S ( \partial _{x_1} u \cdot n_1+ \beta ^2(x) \partial _{x_2} u \cdot n_2) x_0 \partial _{x_0} u d \sigma \nonumber \\&\quad \quad + 4 (x_0 (x_0 - \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u) \nonumber \\&\quad \quad + (\, ^t (P- P_2) u, x_0 \partial _{x_0} u ) + (x_0 \partial _{x_0} u, \, ^t (P-P_2) u) \nonumber \\&\quad \ge \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 \nonumber \\&\quad \quad - c \left( \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} \partial _{x_1} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} u \Vert ^2 \right) \nonumber \\&\quad \quad + \left( \left( \frac{1}{2} (x_0- \alpha (x'))^2 + 2 x_0 (x_0 - \alpha (x')) \right) \partial _{x_2} u, \partial _{x_2} u \right) . \end{aligned}$$
(20)

Making use of Lemma 1 and taking \(\frac{4}{5}< \eta < 1\), we have \(\frac{1}{2} (x_0 - \alpha (x'))^2 +2x_0 (x_0 \alpha (x')) > 0\), in \(\varOmega _k {\setminus } \overline{\varOmega }_{k, \eta }\). For k small enough, it results

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, ^t Pu \Vert , \nonumber \\&\quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _k {\setminus } \varOmega _{k,\eta }, \ D'u \cdot n'|_S=0. \end{aligned}$$
(21)

Since \(\varOmega _0 \cap \Gamma \) has zero measure, without lost generality, we consider \(u \in C_0^{\infty }(\overline{\varOmega })\) with \(\mathrm{supp} \, u \subseteq \varOmega _k {\setminus } (\varOmega _0 \cap \Gamma )\). Let \(\varphi \in C_0^{\infty }(\overline{\varOmega })\), with \(\varphi \equiv 1\) on \(\varOmega _{k, \frac{4}{5}} \cap \mathrm{supp} \, u\), \(\mathrm{supp} \, \varphi \subseteq \varOmega _{k, \eta _1}\), with \(\eta _1 > \frac{4}{5}\) and \(0 \le \varphi \le 1\) in \(\overline{\varOmega }\). Furthermore, let \(\varphi ' \in C_0^{\infty }(\overline{\varOmega })\), with \(\varphi ' \equiv 1\) on \(\varOmega _{k, \eta }'\) and \(\mathrm{supp} \, \varphi \varphi ' \subseteq \varOmega _{k, \eta _1, \eta '}\). We rewrite (14) for \(\varphi \varphi ' u\), with \(u \in C_0^{\infty }(\overline{\varOmega })\), and for k small enough:

$$\begin{aligned} \Vert \partial _{x_0} \varphi \varphi ' u \Vert + \Vert \partial _{x_1} \varphi \varphi ' u \Vert + \Vert (x_0- \alpha (x') \partial _{x_2} \varphi \varphi ' u \Vert \le \varepsilon \Vert \, ^t P \varphi \varphi ' u \Vert . \end{aligned}$$

Taking into account (19), we have

$$\begin{aligned}&\Vert \partial _{x_0} \varphi (1- \varphi ') u \Vert + \Vert \partial _{x_1} \varphi (1- \varphi ') u \Vert \\&+ \Vert (x_0- \alpha (x') \partial _{x_2} \varphi (1- \varphi ') u \Vert \le \varepsilon \Vert \, ^t P \varphi (1- \varphi ') u \Vert . \end{aligned}$$

Adding the previous inequalities and taking \(\varepsilon \) small enough, we obtain

$$\begin{aligned} \Vert \partial _{x_0} \varphi u \Vert + \Vert \partial _{x_1} \varphi u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} \varphi u \Vert + \Vert \varphi u \Vert \le \varepsilon \Vert \, ^t P \varphi u \Vert . \end{aligned}$$

With analogous techniques, it follows

$$\begin{aligned}&\Vert \partial _{x_0} \varphi u \Vert + \Vert \partial _{x_1} \varphi u \Vert + \Vert (x_0- \alpha (x') \partial _{x_2} \varphi u \Vert + \Vert \varphi u \Vert \nonumber \\&\quad \le \varepsilon \left( \Vert \varphi \, ^t P u \Vert + \Vert [\, ^t P, \varphi ] u \Vert \right) \nonumber \\&\quad \le \varepsilon \Vert \, ^t Pu \Vert + c \varepsilon \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \right) . \end{aligned}$$
(22)

Then, set \(\psi = 1- \varphi \), we rewrite (21) for \(\psi u\)

$$\begin{aligned}&\Vert \partial _{x_0} \psi u \Vert + \Vert \partial _{x_1} \psi u \Vert + \Vert (x_0- \alpha (x') \partial _{x_2} \psi u \Vert + \Vert \psi u \Vert \nonumber \\&\quad \le \varepsilon \Vert \, ^t P \psi u \Vert \nonumber \\&\quad \le \varepsilon \left( \Vert \psi \, ^t P u \Vert + \Vert [\, ^t P, \psi ] u \Vert \right) \nonumber \\&\quad \le \varepsilon \Vert \, ^t Pu \Vert + c \varepsilon \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \right) . \end{aligned}$$
(23)

Adding (22) and (23), it follows

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0- \alpha (x') \partial _{x_2} u \Vert + \Vert u \Vert \\&\quad \le \varepsilon \Vert \, ^t Pu \Vert + c \varepsilon \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \right) . \end{aligned}$$

Then, taking \(\varepsilon \) small enough, the claim is achieved. \(\square \)

Now, we prove the counterpart results for the Cauchy–Robin problem.

Lemma 3

For every \(\varepsilon , \delta >0\) there exists \(k>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 -\alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, {{}^{t}}P u \Vert , \\&\qquad \ \, \, \forall u \in C^{\infty }_0 (\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq I_{k, \delta }, \ L'u \cdot n'|_S=0. \end{aligned}$$

Proof

Integrating by parts, for every \(u \in C^{\infty }_0(\overline{\varOmega })\) such that \(\mathrm{supp} \, u \subseteq I_{k, \delta }\) and \(L'u \cdot n'|_S=0\), we have

$$\begin{aligned}&(\, {{}^{t}}P_2u, x_0 \partial _{x_0} u) + (x_0 \partial _{x_0} u, \, {{}^{t}}P_2u) \nonumber \\&\quad = \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 +2 \left( x_0 (x_0- \alpha (x')) \partial _{x_2} u, \partial _{x_2} u \right) \nonumber \\&\quad \quad + 4 \left( x_0 (x_0- \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u \right) \nonumber \\&\quad \quad + 2 \int _S \left( \partial _{x_1} u \cdot n_1 + \beta ^2(x) \partial _{x_2} u \cdot n_2 \right) x_0 \partial _{x_0} u \, d\sigma \nonumber \\&\quad = \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 +2 \left( x_0 (x_0- \alpha (x')) \partial _{x_2} u, \partial _{x_2} u \right) \nonumber \\&\quad \quad + 4 \left( x_0 (x_0- \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u \right) \nonumber \\&\quad \quad + 2 \int _S \left( \widetilde{a}_1(x) n_1 + \beta ^2(x) \widetilde{a}_2(x) n_2 \right) u x_0 \partial _{x_0} u \, d\sigma , \end{aligned}$$
(24)

where we toke into account that \(L'u \cdot n'|_S=0\). It results

$$\begin{aligned}&\int _S (\widetilde{a}_1(x) n_1 + \beta ^2(x) \widetilde{a}_2(x) n_2) u x_0 \partial _{x_0} u d \sigma \nonumber \\&\quad = \int _{\varOmega _k} x_0 \partial _{x_1}(\widetilde{a}_1(x) u \partial _{x_0} u) dx + \int _{\varOmega _k} x_0 \partial _{x_2}(\widetilde{a}_2(x) (x_0- \alpha (x')) u \partial _{x_0} u) dx \nonumber \\&\quad = \frac{1}{2} (x_0 \partial _{x_1} \widetilde{a}_1(x), \partial _{x_0} u^2) - (\widetilde{a}_1(x) u, \partial _{x_1} u) - (x_0 \partial _{x_0} \widetilde{a}_0(x) u, \partial _{x_1} u) \nonumber \\&\quad \quad + \frac{1}{2} (x_0 \partial _{x_2}( \widetilde{a}_2(x) (x_0 - \alpha (x'))), \partial _{x_0} u^2) - (\widetilde{a}_2(x) (x_0- \alpha (x')) u, \partial _{x_2} u) \nonumber \\&\quad \quad - (x_0 \partial _{x_0}( \widetilde{a}_2(x) (x_0 - \alpha (x'))) u, \partial _{x_2} u). \end{aligned}$$
(25)

Making use of (24), (25) and Lemma 1, it follows

$$\begin{aligned}&(\, {{}^{t}}P_2 u, x_0 \partial _{x_0} u) + (x_0 \partial _{x_0} u, \, {{}^{t}}P_2 u) \nonumber \\&\quad \ge \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 -\alpha (x')) \partial _{x_2} u \Vert ^2 - \frac{1}{\delta } \Vert x_0^{\frac{1}{2}} (x_0 -\alpha (x')) \partial _{x_2} u \Vert ^2 \nonumber \\&\quad \quad - c \big ( \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert ^2 - \Vert x_0^{\frac{1}{2}} \partial _{x_1} u \Vert ^2 - \Vert x_0^{\frac{1}{2}} (x_0 -\alpha (x')) \partial _{x_2} u \Vert ^2 - \Vert x_0^{\frac{1}{2}} u \Vert ^2 \big ). \end{aligned}$$
(26)

On the other hand, we have

$$\begin{aligned}&(\, ^t(P-P_2) u, x_0 \partial _{x_0} u) + (x_0 \partial _{x_0} u, \, ^t(P-P_2) u) \nonumber \\&\quad \ge - c \big ( \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert ^2 - \Vert x_0^{\frac{1}{2}} \partial _{x_1} u \Vert ^2 - \Vert x_0^{\frac{1}{2}} (x_0 -\alpha (x')) \partial _{x_2} u \Vert - \Vert x_0^{\frac{1}{2}} u \Vert ^2 \big ). \end{aligned}$$
(27)

Adding (26) and (27) and using Lemma 1, we obtain

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 -\alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 \\&\quad \le \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert \Vert x_0^{\frac{1}{2}} \, {{}^{t}}P u \Vert + \frac{1}{\delta } \Vert x_0^{\frac{1}{2}} (x_0 -\alpha (x')) \partial _{x_2} u \Vert ^2 + c \big ( \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert ^2 \\&\quad \quad + \Vert x_0^{\frac{1}{2}} \partial _{x_1} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} (x_0 -\alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} u \Vert ^2 \big ), \end{aligned}$$

from which the claim follows taking \(x_0 \le k\) and k small enough. \(\square \)

We prove the following result by using similar arguments as above.

Theorem 3

Let us suppose that assumptions (i), (ii) and (iii) hold. It results that for every \(\varepsilon > 0\) there exists \(k > 0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, ^t Pu \Vert , \\&\, \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _k =[0,k[ \times \varOmega _0, \ L'u \cdot n'|_S =0. \end{aligned}$$

Proof

We can proceed as in the proof of Theorem 2 making use of Lemma 3 instead of Lemma 2. Moreover, the integral \(2 \int _S \left( \partial _{x_1} u \cdot n_1 + \beta ^2(x) \partial _{x_2} u \cdot n_2 \right) x_0 \partial _{x_0} u \, d\sigma \) in (20) has be estimated as in (25). More precisely, using the same arguments in (25), we obtain

$$\begin{aligned}&2 \int _S \left( \partial _{x_1} u \cdot n_1 + \beta ^2(x) \partial _{x_2} u \cdot n_2 \right) x_0 \partial _{x_0} u \, d\sigma \\&\quad \ge -c \left( \Vert x_0^{\frac{1}{2}} \partial _{x_0} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} \partial _{x_1} u \Vert ^2 + \Vert x_0^{\frac{1}{2}} (x_0- \alpha (x')) \partial _{x_2} u \Vert ^2 - \Vert x_0^{\frac{1}{2}} u \Vert ^2 \right) ^2. \end{aligned}$$

As a consequence, the anologous estimate of (20) can be deduced. \(\square \)

Taking into account Theorems 2 and 3, we deduce easily the next theorem.

Theorem 4

Let us suppose that assumptions (i), (ii) and (iii) hold. It results that for every \(\varepsilon > 0\) there exists \(k > 0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, ^t Pu \Vert , \\&\qquad \quad \ \, \forall u \in C_0^{\infty }(\overline{\widetilde{\varOmega }}): \ \mathrm{supp} \, u \subseteq \widetilde{\varOmega }_k =[0,k[ \times \widetilde{\varOmega }_0. \end{aligned}$$

4 A priori estimates array from \(\varOmega _0\)

Let us set

$$\begin{aligned}&\varOmega _{\overline{x}_0, k, \eta } = \Bigg \{ x \in \overline{\varOmega }: \quad x_0 \in [\overline{x}_0, \overline{x}_0 + k[, \\&\quad \eta \overline{x}_0+ (1+ \eta ) \alpha (x') \le x_0 \le \left( \frac{1}{5} + \eta \right) \alpha (x') + \left( \frac{4}{5} - \eta \right) \overline{x}_0 \Bigg \},\\&\quad \varOmega _{\overline{x}_0, k, \eta }' = \left\{ x \in \varOmega _{\overline{x}_0, k, \eta }: \ |\partial _{x_1} \alpha (x') | \ge 1 \right\} ,\\&\quad \varOmega _{\overline{x}_0, k, \eta , \eta '}' = \left\{ x \in \varOmega _{\overline{x}_0, k, \eta }: \ |\partial _{x_1} \alpha (x') | \ge 1 - \eta ' \right\} , \end{aligned}$$

where \(\overline{x}_0 >0\), \(\frac{4}{5}< \eta < 1\), \(k>0\). Evidently \(\varOmega _{\overline{x}_0, k, \eta , \eta '}' \supseteq \varOmega _{\overline{x}_0, k, \eta }'\). Moreover, it is possible to choose k, \(\eta \), \(\eta '\) such that assumptions (i) and (ii) are verified in \(\varOmega _{\overline{x}_0, k, \eta , \eta '}'\).

The following result holds.

Theorem 5

Let us assume that assumptions (i), (ii) and (iii) hold. Then, for every \(\overline{x}_0 > 0\) and for every \(\varepsilon > 0\) there exists \(k > 0\) such that

$$\begin{aligned}&\Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert \le \varepsilon \left( \Vert \, ^t Pu \Vert + \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert u \Vert \right) , \nonumber \\&\qquad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta }, \ D'u \cdot n'|_S =0. \end{aligned}$$
(28)

Moreover, for every \(\overline{x}_0 > 0\) there exist \(k > 0\) and \(c > 0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, ^t Pu \Vert , \nonumber \\&\qquad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta }, \ D'u \cdot n'|_S =0. \end{aligned}$$
(29)

Proof

If the intersection between \(\Gamma \) and the plane \(x_0 = \overline{x}_0\) is empty, integrating by parts, as in the proof of Lemma 2, in the following inner products

$$\begin{aligned} \left( e^{\tau (x_0 - \overline{x}_0)} \, ^t Pu, \partial _{x_0} u \right) + \left( e^{\tau (x_0 - \overline{x}_0)} \partial _{x_0} u, \, ^t Pu \right) \end{aligned}$$

we easily obtain that for every \(\varepsilon > 0\) there exists \(k > 0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, ^t Pu \Vert , \\&\ \qquad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k}, \ D'u \cdot n'|_S =0. \end{aligned}$$

If the intersection between \(\Gamma \) and the plane \(x_0 = \overline{x}_0\) is nonempty, we proceed as follows. We remark that the intersection between \(\varOmega _{\overline{x}_0,k, \eta }\) and the plane \(x_0 = \overline{x}_0\) has zero measure. Moreover, the intersection between \(\varOmega _{\overline{x}_0,k, \eta }\) and the surface S is empty or has zero measure, for k small enough. Let us set

$$\begin{aligned} g_{\overline{x}_0}(x') = \frac{\alpha (x') - \overline{x}_0}{\partial _{x_1} \alpha (x')}, \quad h_{\overline{x}_0}(x')= \left| \frac{\partial ^2_{x_1} \alpha (x') (\alpha (x') - \overline{x}_0)}{(\partial _{x_1} \alpha (x'))^2} \right| . \end{aligned}$$

Let us observe that, for a fixed \(\varepsilon >0\), there exists \(k>0\) such that \(|x_0 - \overline{x}_0| < \varepsilon \), \(|\alpha (x') - \overline{x}_0| < \varepsilon \), \( |g_{\overline{x}_0}(x')| < \varepsilon \), \(|h_{\overline{x}_0}(x')| < \varepsilon \), for every \(x \in \varOmega _{\overline{x}_0, k,h}\). Let \(A_{\overline{x}_0} u = g_{\overline{x}_0}(x') \partial _{x_1} u + (x_0 - \overline{x}_0) \partial _{x_0} u\). Integrating by parts in the following inner products

$$\begin{aligned} (\, ^tPu, A_{\overline{x}_0} u) + (A_{\overline{x}_0} u, \, ^tPu) \end{aligned}$$

and since the intersections between \(\varOmega _{\overline{x}_0,k, \eta }\) and the plane \(x_0 = \overline{x}_0\) and the surface S, respectively, have zero measure, we have

$$\begin{aligned}&(h_{\overline{x}_0} (x') \partial _{x_0} u, \partial _{x_0} u) + (h_{\overline{x}_0} (x') \partial _{x_1} u, \partial _{x_1} u) + ((4-h_{\overline{x}_0}(x')) (x_0 - \alpha (x'))^2 \partial _{x_2}u, \partial _{x_2}u) \\&\quad \le 4 |(g_{\overline{x}_0}(x') (x_0 - \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_1} u )| \\&\quad \quad + 4 |((x_0 - \overline{x}_0) (x_0 - \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u )| \\&\quad \quad + 2 |( (x_0 - \alpha (x'))^2 \partial _{x_2} g_{\overline{x}_0}(x') \partial _{x_2} u, \partial _{x_2} u )| + 2 | \mathrm{Re} (\, ^t P_1u, A_{\overline{x}_0}u) | \\&\quad \quad + 2 | \mathrm{Re} (\, ^t P_0u, A_{\overline{x}_0}u) | + | (\, ^t Pu, A_{\overline{x}_0}u) | + |( A_{\overline{x}_0}u, \, ^t Pu) |, \\&\quad \quad \ \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0, k, h}, \ D'u \cdot n'|_S=0. \end{aligned}$$

This implies

$$\begin{aligned}&(4- \varepsilon ) \Vert (x_0 - \alpha (x')) \partial _{x_2}u \Vert ^2 \\&\quad \le c \varepsilon \left( \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 \right) + \varepsilon \Vert \, ^t Pu \Vert ^2,\\&\qquad \qquad \qquad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0, k, \eta , \eta '}, \ D'u \cdot n'|_S=0. \end{aligned}$$

Hence, taking \(\varepsilon \) small enough, we deduce

$$\begin{aligned}&\Vert (x_0 - \alpha (x')) \partial _{x_2}u \Vert \le \varepsilon \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert \right) + \varepsilon \Vert \, ^t Pu \Vert ,\nonumber \\&\quad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0, k, \eta , \eta '}, \ D'u \cdot n'|_S=0. \end{aligned}$$
(30)

For \(\varepsilon \) small enough, it follows

$$\begin{aligned}&\Vert (x_0 - \alpha (x')) \partial _{x_2}u \Vert \le \varepsilon \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert \right) + \varepsilon \Vert \, ^t Pu \Vert ,\nonumber \\&\quad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0, k, \eta , \eta '}', \ D'u \cdot n'|_S=0. \end{aligned}$$
(31)

Now, we obtain (29) integrating by parts in the following inner products:

$$\begin{aligned} (\, ^tPu, Au) + (Au, \, ^t Pu). \end{aligned}$$

In fact, we have

$$\begin{aligned}&h_1 \Vert \partial _{x_0} u \Vert ^2 + h_1 \Vert \partial _{x_1} u \Vert ^2 + (4-h_2) \Vert (x_0-\alpha (x')) \partial _{x_2} u \Vert ^2 \nonumber \\&\quad \le c \Vert (x_0-\alpha (x')) \partial _{x_2} u \Vert \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert \right) + c \Vert (x_0-\alpha (x')) \partial _{x_0} u \Vert \nonumber \\&\quad \quad + \Vert (x_0-\alpha (x')) \partial _{x_1} u \Vert +c \Vert (x_0-\alpha (x')) \partial _{x_1} u \Vert \nonumber \\&\quad \quad + c \Vert u \Vert \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert \right) + c \Vert \, ^t Pu \Vert \left( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert \right) , \nonumber \\&\qquad \ \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0, k, \eta , \eta '}', \ \frac{4}{5} \le h < 1, \ D'u \cdot n'|_S=0. \end{aligned}$$
(32)

Making use of (32) and Lemma 1, it follows

$$\begin{aligned}&\quad \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, ^t Pu \Vert , \nonumber \\&\forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta ,\eta '}', \ \frac{4}{5} \le h < 1, \ D'u \cdot n'|_S =0. \end{aligned}$$
(33)

If \(\mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta } {\setminus } \varOmega _{\overline{x}_0,k, \eta ,\eta '}'\), we integrate by parts in the inner products

$$\begin{aligned}&(\, ^t Pu, (x_0-\overline{x}_0) \partial _{x_0}u) + ((x_0-\overline{x}_0) \partial _{x_0}u, \, ^t Pu) \\&\quad \le \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 \\&\qquad + 2((x_0- \overline{x}_0) (x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_2} u) \\&\qquad + 4 ((x_0- \overline{x}_0) (x_0 - \alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u) \\&\qquad + ( \, ^t (P-P_2)u, (x_0 - \overline{x}_0) \partial _{x_0} u) \\&\qquad + ( (x_0 - \overline{x}_0) \partial _{x_0} u, \, ^t (P-P_2)u). \end{aligned}$$

Then, for k small enough and taking into account Lemma 1, it follows

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 \\&\quad \le \varepsilon \Vert \, ^t Pu \Vert ^2 + \varepsilon \left( \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 \right) \\&\quad \quad + \varepsilon \Vert (x_0 - \alpha (x'))^{\frac{1}{2}} \partial _{x_2} u \Vert ^2. \end{aligned}$$

Hence, for \(\varepsilon \) small enough, it results

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 \nonumber \\&\quad \le \varepsilon \left( \Vert \, ^t Pu \Vert ^2 + \Vert (x_0 - \alpha (x'))^{\frac{1}{2}} \partial _{x_2} u \Vert ^2 \right) . \end{aligned}$$
(34)

We estimate \(\Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert \), as done in (18). Computing the inner products

$$\begin{aligned} (\, ^t Pu, \partial _{x_0} u ) + ( \partial _{x_0} u , \, ^t Pu), \quad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta } {\setminus } \varOmega _{\overline{x}_0,k, \eta }', \end{aligned}$$

and proceeding with the same technique, we deduce

$$\begin{aligned}&\Vert (x_0 - \alpha (x'))^{\frac{1}{2}} \partial _{x_2} u \Vert ^2 + \int _{\Gamma } \left[ (\partial _{x_0} u)^2 + 2 \partial _{x_1} \alpha (x') \partial _{x_0} u \partial _{x_1} u + (\partial _{x_1} u)^2 \right] d \sigma \nonumber \\&\quad \le \Vert \, ^t Pu \Vert ^2 + | ((x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_0} u) |. \end{aligned}$$
(35)

Making use of (34) and (35), we have

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert u \Vert ^2 \le \varepsilon \Vert \, ^t Pu \Vert ^2, \nonumber \\&\qquad \qquad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta } {\setminus } \varOmega _{\overline{x}_0,k, \eta }'. \end{aligned}$$
(36)

Since \(\Gamma \cap \varOmega _{\overline{x}_0}\) has zero measure, without lost generality, we consider \(u \in C_0^{\infty }(\overline{\varOmega })\) with \(\mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k} {\setminus } (\Gamma \cap \varOmega _{\overline{x}_0})\), where \(\varOmega _{\overline{x}_0} = \{ x \in \overline{\varOmega }: \ x_0 = \overline{x}_0 \}\). Now, let \(\varphi \in C_0^{\infty }(\overline{\varOmega })\) such that \(\varphi \equiv 1\) on \(\varOmega _{\overline{x}_0,k, \eta }'\) and \(\varphi \equiv 0\) on \(\varOmega _{\overline{x}_0,k, \eta } {\setminus } \varOmega _{\overline{x}_0,k, \eta , \eta '}'\). If \(u \in C_0^{\infty }(\overline{\varOmega })\) such that \(\mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta }\) and \(D'u \cdot n'|_S=0\), we can apply (31) to \(\varphi u\) obtaining

$$\begin{aligned} \Vert (x_0- \alpha (x')) \partial _{x_2} \varphi u \Vert \le \varepsilon ( \Vert \partial _{x_0} \varphi u \Vert + \Vert \partial _{x_1} \varphi u \Vert ) + \varepsilon \Vert \, ^t P \varphi u \Vert , \end{aligned}$$
(37)

then it follows

$$\begin{aligned} \Vert \partial _{x_0} \varphi u \Vert + \Vert \partial _{x_1} \varphi u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} \varphi u \Vert + \Vert \varphi u \Vert \le c \Vert \, ^t P \varphi u \Vert . \end{aligned}$$
(38)

On the other hand, by (36), it results

$$\begin{aligned}&\Vert \partial _{x_0} (1- \varphi ) u \Vert + \Vert \partial _{x_1} (1- \varphi ) u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} (1- \varphi ) u \Vert \nonumber \\&\quad + \Vert (1- \varphi ) u \Vert \le c \Vert \, ^t P (1- \varphi ) u \Vert . \end{aligned}$$
(39)

Taking into account (37), (39) and for \(\varepsilon \) small enough, we have

$$\begin{aligned} \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert \le \varepsilon ( \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert \, ^t P u \Vert ). \end{aligned}$$

As a consequence, (28) holds. Moreover, by (38) and (39) and for \(\varepsilon \) small enough, we obtain

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, ^t P u \Vert , \\&\qquad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta }, \ D'u \cdot n'|_S=0, \end{aligned}$$

and, hence, (29) is also proved. \(\square \)

The following results holds.

Theorem 6

For every \(\overline{x}_0>0\) and \(\varepsilon >0\) there exists \(k >0\) such that for every \(\eta \in \left] \frac{4}{5}, 1 \right[\) it results

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, ^t Pu \Vert , \nonumber \\&\quad \ \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k} {\setminus } \varOmega _{\overline{x}_0,k, \eta }, \ D'u \cdot n'|_S =0. \end{aligned}$$
(40)

Proof

Itegrating by parts in the following inner products

$$\begin{aligned} (\, ^t Pu, (x_0 - \overline{x}_0) \partial _{x_0}u) + ((x_0 - \overline{x}_0) \partial _{x_0}u, \, ^t Pu), \end{aligned}$$

we obtain

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \frac{1}{2} \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \frac{1}{2} \left( (x_0 - \alpha (x'))^2 \partial _{x_2} u, \partial _{x_2} u \right) \\&\qquad + 2 \left( (x_0 - \overline{x}_0) (x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_2} u \right) \\&\quad \le \varepsilon \left( \Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_0} u \Vert ^2 + c \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 + \Vert \, ^t Pu \Vert ^2 \right) . \end{aligned}$$

For \(c |x_0 - \overline{x}_0| < \varepsilon \), taking into account that

$$\begin{aligned} \frac{1}{2} \left( (x_0 - \alpha (x'))^2 \partial _{x_2} u, \partial _{x_2} u \right) + 2 \left( (x_0 - \overline{x}_0) (x_0 - \alpha (x')) \partial _{x_2} u, \partial _{x_2} u \right) \ge 0, \end{aligned}$$

in \(\varOmega _{\overline{x}_0, k} {\setminus } \varOmega _{\overline{x}_0,k,\eta }\), for \(\frac{4}{5}< \eta < 1\), by using Lemma 1 and for \(\varepsilon \) small enough, there exists \(k>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le \varepsilon \Vert \, ^t Pu \Vert , \\&\forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k} {\setminus } \varOmega _{\overline{x}_0,k, \eta , \eta '}', \ D'u \cdot n'|_S =0. \end{aligned}$$

As a consequence, the claim is achieved. \(\square \)

Hence, we obtain the following theorem.

Theorem 7

Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every \(\overline{x}_0>0\) and for every \(\varepsilon >0\) there exists \(k >0\) such that

$$\begin{aligned}&\Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert \le \varepsilon \left( \Vert \, ^t Pu \Vert + \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert u \Vert \right) , \nonumber \\&\qquad \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k}, \ D'u \cdot n'|_S =0. \end{aligned}$$
(41)

Moreover, for every \(\overline{x}_0 >0\) there exist \(k>0\) and \(c>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, ^t Pu \Vert , \nonumber \\&\qquad \ \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k}, \ D'u \cdot n'|_S =0. \end{aligned}$$
(42)

Proof

Let \(\varphi \in C_0^{\infty }(\overline{\varOmega })\) such that \(\varphi \equiv 1\) on \(\varOmega _{\overline{x}_0, k, \eta _1} \cap \mathrm{supp} \, u\), and let \(\psi \in C_0^{\infty }(\overline{\varOmega })\) such that \(\psi \equiv 1\) on \(\varOmega _{\overline{x}_0, k} {\setminus } \varOmega _{\overline{x}_0, k, \eta _1}\) and \(\psi \equiv 0\) on \(\varOmega _{\overline{x}_0, k} {\setminus } \varOmega _{\overline{x}_0, k, \eta _2}\), with \(\frac{4}{5}< \eta _1< \eta _2 < 1\).

Applying Theorem 5 to \(\varphi u\), Theorem 6 to \(\psi u\) and adding the obtained inequalities, the claims are achieved \(\square \)

With analogous proof of Theorem 5, we are able to establish the following result.

Theorem 8

Let us suppose that assumptions (i), (ii) and (iii) hold. It results that for every \(\overline{x}_0>0\) and for every \(\varepsilon >0\) there exists \(k >0\) such that

$$\begin{aligned}&\Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert \le \varepsilon \left( \Vert \, ^t Pu \Vert + \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert u \Vert \right) , \\&\qquad \ \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta }, \ L'u \cdot n'|_S =0. \end{aligned}$$

Moreover, for every \(\overline{x}_0 >0\) there exist \(k>0\) and \(c>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, ^t Pu \Vert ,\\&\qquad \ \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k, \eta }, \ L'u \cdot n'|_S =0. \end{aligned}$$

Now, we prove a useful estimate.

Theorem 9

For every \(\overline{x}_0>0\) and \(\varepsilon >0\) there exists \(k>0\) such that, for every \(\eta \in \left] \frac{4}{5}, 1 \right[\), it results

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 -\alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, {{}^{t}}P u \Vert , \\&\forall u \in C^{\infty }_0 (\varOmega _{\overline{x}_0,k}): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k} {\setminus } \varOmega _{\overline{x}_0,k, \eta }, \ L'u \cdot n'|_S =0. \end{aligned}$$

Proof

Integrating by parts, we obtain

$$\begin{aligned}&(\, ^tPu, (x_0- \overline{x}_0) \partial _{x_0} u) + ((x_0- \overline{x}_0) \partial _{x_0} u, \, ^t Pu) \nonumber \\&\quad = \Vert \partial _{x_0} u \Vert ^2 + \frac{1}{2} \Vert \partial _{x_1} u \Vert ^2 + \frac{1}{2} \Vert (x_0-\alpha (x')) \partial _{x_2} u \Vert ^2 \nonumber \\&\qquad + \frac{1}{2} ((x_0 - \alpha (x'))^2 \partial _{x_2} u, \partial _{x_2} u) \nonumber \\&\qquad + 2 ( (x_0 - \overline{x}_0) (x_0-\alpha (x')) \partial _{x_2} u, \partial _{x_2} u ) \nonumber \\&\qquad + 4 ( (x_0 - \overline{x}_0) (x_0-\alpha (x')) \partial _{x_2} \alpha (x') \partial _{x_2} u, \partial _{x_0} u ) \nonumber \\&\qquad + 2 \int _S (\partial _{x_1} u \cdot n_1+ \beta ^2(x) \partial _{x_2} u \cdot n_2) (x_0 - \overline{x}_0) \partial _{x_0} u d \sigma . \end{aligned}$$
(43)

On the other hand, as done in (25), we have

$$\begin{aligned}&\int _S ( \widetilde{a}_1(x) n_1+ \beta (x) \widetilde{a}_2(x) n_2) u x_0 \partial _{x_0} u d \sigma \nonumber \\&\quad = \frac{1}{2} \left( x_0 \partial _{x_1} \widetilde{a}_1(x), \partial _{x_0} u^2 \right) - \left( \widetilde{a}_1(x) u, \partial _{x_1} u \right) - \left( x_0 \partial _{x_0} \widetilde{a}_1(x), \partial _{x_1} u \right) \nonumber \\&\qquad + \frac{1}{2} (x_0 \partial _{x_2}((x_0 - \alpha (x')) \widetilde{a}_2(x)), \partial _{x_0} u^2) - (( x_0 - \alpha (x')) \widetilde{a}_2(x) u, \partial _{x_2} u) \nonumber \\&\qquad - (x_0 \partial _{x_0} ((x_0- \alpha (x')) \widetilde{a}_2(x) ) u, \partial _{x_2} u ). \end{aligned}$$
(44)

Making use of (43) and (44) and taking into acount

$$\begin{aligned} \frac{1}{2} \left( (x_0 - \alpha (x'))^2 \partial _{x_2} u, \partial _{x_2} u \right) + 2 \left( (x_0 - \overline{x}_0) (x_0- \alpha (x')) \partial _{x_2} u, \partial _{x_2} u \right) \ge 0, \end{aligned}$$

for \(\eta \in \left] \frac{4}{5}, 1 \right[\), we deduce

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert ^2 + \Vert \partial _{x_1} u \Vert ^2 + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 \\&\quad \le \big ( \Vert (x_0-\overline{x}_0)^{\frac{1}{2}} \partial _{x_0} u \Vert ^2 + \Vert (x_0-\overline{x}_0)^{\frac{1}{2}} \partial _{x_1} u \Vert ^2 + \Vert (x_0-\overline{x}_0)^{\frac{1}{2}} (x_0 - \alpha (x')) \partial _{x_2} u \Vert ^2 \\&\qquad + \Vert (x_0-\overline{x}_0)^{\frac{1}{2}} u \Vert ^2 + \Vert (x_0-\overline{x}_0)^{\frac{1}{2}} \, ^t Pu \Vert ^2 \big ) . \end{aligned}$$

Then, by using Lemma 1, the claim follows taking \(|x_0 - \overline{x}_0|>k\), with k small enough. \(\square \)

Proceeding as in the proof of Theorem 7, we obtain the following theorem.

Theorem 10

Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every \(\overline{x}_0>0\) and for every \(\varepsilon >0\) there exists \(k >0\) such that

$$\begin{aligned}&\Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert \le \varepsilon \left( \Vert \, ^t Pu \Vert + \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert u \Vert \right) , \\&\qquad \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k}, \ L'u \cdot n'|_S =0. \end{aligned}$$

Moreover, for every \(\overline{x}_0 >0\) there exist \(k>0\) and \(c>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, ^t Pu \Vert , \\&\qquad \ \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _{\overline{x}_0,k}, \ L'u \cdot n'|_S =0. \end{aligned}$$

As a consequence, the next result holds.

Theorem 11

Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every \(\overline{x}_0>0\) and for every \(\varepsilon >0\) there exists \(k >0\) such that

$$\begin{aligned}&\Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert \le \varepsilon \left( \Vert \, ^t Pu \Vert + \Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert u \Vert \right) , \\&\qquad \ \forall u \in C_0^{\infty }(\overline{\widetilde{\varOmega }}): \ \mathrm{supp} \, u \subseteq \widetilde{\varOmega }_{\overline{x}_0,k}= [\overline{x}_0, \overline{x}_0+k[ \times \widetilde{\varOmega }. \end{aligned}$$

Moreover, for every \(\overline{x}_0 >0\) there exist \(k>0\) and \(c>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert + \Vert \partial _{x_1} u \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert + \Vert u \Vert \le c \Vert \, ^t Pu \Vert , \\&\qquad \qquad \qquad \forall u \in C_0^{\infty }(\overline{\widetilde{\varOmega }}): \ \mathrm{supp} \, u \subseteq \widetilde{\varOmega }_{\overline{x}_0,k}. \end{aligned}$$

5 A priori estimates in Sobolev spaces with \(s<0\)

First of all, let us obtain a priori estimate in Sobolev spaces with \(s < 0\) by using the theory of pseudodifferental operators.

Theorem 12

Let us suppose that assumptions (i), (ii) and (iii) hold. For every \(\overline{x}_0 \ge 0\) and for every \(s < 0\) there exist \(k > 0\) and \(c > 0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0, s}} + \Vert (x_0 -\alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} \le c \Vert \, ^t Pu \Vert _{H^{0,s}},\nonumber \\&\qquad \ \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq [\overline{x}_0, \overline{x}_0+k[ \times \varOmega _0 = \varOmega _{\overline{x}_0,k}, \ D'u \cdot n'|_S=0. \end{aligned}$$
(45)

Proof

Let \(u \in C^{\infty }_0(\overline{\widetilde{\varOmega }}_{\overline{x}_0,k})\), let \(\varphi \in C^{\infty }_0(\overline{\widetilde{\varOmega }})\) such that \(\mathrm{supp} \, \varphi \subseteq \widetilde{\varOmega }_{\overline{x}_0,k}\), \(D' \varphi \cdot n'|_S=0\) and \(\varphi \equiv 1\) on the support of the projection of u on the plane \(x_0= \overline{x}_0\). Let us set \(v_s= \varphi (x') A_s u\). Applying the claims of Theorems 4 and 11 if we have \(\overline{x}_0 = 0\) or \(\overline{x}_0 \ne 0\), respectively, it results

$$\begin{aligned} \Vert \partial _{x_0} v_s \Vert + \Vert \partial _{x_1} v_s \Vert + \Vert (x_0 -\alpha (x')) \partial _{x_2} v_s \Vert + \Vert v_s \Vert \le c \Vert \, ^t P v_s \Vert . \end{aligned}$$
(46)

We remark that

$$\begin{aligned}&\Vert \partial _{x_0} v_s \Vert = \Vert \partial _{x_0} \varphi (x') A_s u \Vert \nonumber \\&\quad = \Vert \varphi (x') A_s \partial _{x_0} u \Vert \nonumber \\&\quad = \Vert A_s \varphi (x') \partial _{x_0} u + [ \varphi , A_s] \partial _{x_0} u \Vert \nonumber \\&\quad \ge \Vert A_s \partial _{x_0} u \Vert - \Vert R \partial _{x_0} u \Vert \nonumber \\&\quad \ge \Vert \partial _{x_0} u \Vert _{H^{0,s}} - \Vert R \partial _{x_0} u \Vert , \end{aligned}$$
(47)

where \(R= [ \varphi , A_s] u\) is a regularizing operator with respect to the variable \(x'\).

On the other hand, making use of Lemma 1 and taking into account that

$$\begin{aligned}&\partial _{x_0}^2 u = - \, ^tPu + \partial _{x_1}^2 u + (x_0 - \alpha (x'))^2 \partial _{x_2}^2 u + 4 (x_0 - \alpha (x')) \partial _{x_2} \alpha \, \partial _{x_2} u \\&\quad - \frac{1}{i} \sum _{j=0}^2 a(x) \partial _{x_j} u - \frac{1}{i} \sum _{j=0}^2 \partial _{x_j} a(x) u - 2(\partial _{x_2} \alpha )^2 u +b(x) u, \end{aligned}$$

we obtain

$$\begin{aligned} \Vert R \partial _{x_0} u \Vert\le & {} \Vert R (x_0- \overline{x}_0) \partial ^2_{x_0} u \Vert \nonumber \\\le & {} c \Vert (x_0- \overline{x}_0) \, ^t Pu \Vert _{H^{0,s}} + c \Vert (x_0- \overline{x}_0) \partial _{x_0} u \Vert _{H^{0,s}} \nonumber \\&+ c \Vert (x_0- \overline{x}_0) u \Vert _{H^{0,s}}. \end{aligned}$$
(48)

Making use of (47) and (48), it follows

$$\begin{aligned}&\Vert \partial _{x_0} v_s \Vert \nonumber \\&\quad \ge \Vert \partial _{x_0} u \Vert _{H^{0,s}} - c \Vert (x_0- \overline{x}_0) \, ^t Pu \Vert _{H^{0,s}} - c \Vert (x_0- \overline{x}_0) \partial _{x_0} u \Vert _{H^{0,s}} \nonumber \\&\quad \quad - c \Vert (x_0- \overline{x}_0) u \Vert _{H^{0,s}}. \end{aligned}$$
(49)

Then choosing k small enough and \(|x_0 - \overline{x}_0| <k\), it results

$$\begin{aligned} \Vert \partial _{x_0} v_s \Vert \ge \Vert \partial _{x_0} u \Vert _{H^{0,s}} - c \Vert \, ^t Pu \Vert _{H^{0,s}}. \end{aligned}$$

Proceeding with the same technique, we easily obtain that

$$\begin{aligned} \Vert \partial _{x_1} v_s \Vert\ge & {} \Vert \partial _{x_1} u \Vert _{H^{0,s}} - c \Vert u \Vert _{H^{0,s}} \nonumber \\\ge & {} \Vert \partial _{x_1} u \Vert _{H^{0,s}} - c \Vert (x_0-\overline{x}_0) \partial _{x_0} u \Vert _{H^{0,s}}, \end{aligned}$$
(50)

where we applied Lemma 1. Adding (49) and (50), for \(|x_0 - \overline{x}_0|<k\) with k small enough, we deduce

$$\begin{aligned} \Vert \partial _{x_0} v_s \Vert + \Vert \partial _{x_1} v_s \Vert \ge \Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} - c \Vert \, ^t Pu \Vert _{H^{0,s}}. \end{aligned}$$
(51)

With analogous computations, we have

$$\begin{aligned} \Vert (x_0 - \alpha (x')) \partial _{x_2} v_s \Vert \ge \Vert A_s (x_0 - \alpha (x')) \varphi (x') \partial _{x_2} u \Vert - \Vert R u \Vert - \Vert B_{s-1} \partial _{x_1} u \Vert , \end{aligned}$$
(52)

where \(B_{s-1}\) is a pseudodifferential operator of order \(s-1\). As a consequence, \(B_{s-1} \partial _{x_2}\) is a pseudodifferential operator of order s. By using the continuity property of pseudodifferential operators, it results

$$\begin{aligned} \Vert (x_0 - \alpha (x')) \partial _{x_2} v_s \Vert \ge \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} - c \Vert (x_0 - \overline{x}_0) \partial _{x_1} u \Vert _{H^{0,s}}. \end{aligned}$$
(53)

Adding (51) and (53), for \(|x_0- \overline{x}_0|<k\) with k small enough, it follows

$$\begin{aligned}&\Vert \partial _{x_0} v_s \Vert + \Vert \partial _{x_1} v_s \Vert + \Vert (x_0 - \alpha (x')) \partial _{x_2} v_s \Vert \nonumber \\&\quad \ge \Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} - c \Vert \, ^t Pu \Vert _{H^{0,s}}. \end{aligned}$$
(54)

Finally we have

$$\begin{aligned} \Vert \, ^t Pv_s \Vert\le & {} \Vert A_s \, ^t P u \Vert + \Vert R' \, ^t P u \Vert + \Vert \varphi (x') [\, ^t P, A_s] u \Vert + \Vert R u \Vert \nonumber \\\le & {} \Vert \, ^t P u \Vert _{H^{0,s}} + \Vert (x_0- \overline{x}_0) \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \varphi (x') [\, ^t P, A_s] u \Vert , \end{aligned}$$
(55)

where \(R'\) and R are regularizing operators. Moreover, it results

$$\begin{aligned} \varphi (x') [\, ^t P, A_s] u = \varphi (x') [\, ^t P_2, A_s] u + \varphi (x') [\, ^t P_1, A_s] u + \varphi (x') [\, ^t P_0, A_s] u. \end{aligned}$$
(56)

Evidently, we have

$$\begin{aligned}{}[\, ^t P_2, A_s] u = B_{s+1} u + B_s u, \end{aligned}$$

where \(B_{s+1}\) and \(B_s\) are pseudodifferential operators of order \(s+1\) and s, respectively. The principal symbol of \(B_{s+1}\) is

$$\begin{aligned} b(x, \xi ')= & {} - \frac{1}{i} \left( 2 (x_0-\alpha (x')) (- \partial _{x_1} \alpha (x')) \xi ^2_2 \right) \varphi (x') \partial _{\xi _1}(1+ |\xi '|^2)^{\frac{s}{2}} \\&- \frac{1}{i} \left( 2 (x_0-\alpha (x')) (- \partial _{x_2} \alpha (x')) \xi ^2_2 \right) \varphi (x') \partial _{\xi _2}(1+ |\xi '|^2)^{\frac{s}{2}} \end{aligned}$$

As a consequence, \(B_{s+1} u = (x_0-\alpha (x')) \partial _{x_2} B_s''u+B_s' {u}\), where \(B_s''\) and \(B_s'\) are pseudodifferential operators of order s.

Making use of (41), we obtain

$$\begin{aligned} \Vert B_{s+1} u \Vert= & {} \Vert (x_0- \alpha (x')) \partial _{x_2} B''_su + B_{s}' {u} \Vert \\\le & {} \varepsilon \left( \Vert \, ^t P B_s'' u \Vert + \Vert \partial _{x_0} B_s''u \Vert + \Vert \partial _{x_1} B_s'' u \Vert + \Vert B_s' u \Vert \right) +\Vert B_{s}' {u}\Vert . \end{aligned}$$

Then, it follows

$$\begin{aligned}&\Vert \varphi (x') [^t P_2, A_s] u \Vert \le \varepsilon \big ( \Vert \, ^t P B_s'' u \Vert + \Vert \partial _{x_0} B_s''u \Vert \nonumber \\&\qquad + \Vert \partial _{x_1} B_s'' u \Vert + \Vert B_s'' u \Vert \big ) + \Vert B_s u \Vert + \Vert B_s' u \Vert \nonumber \\&\qquad \le \varepsilon \big ( \Vert \, ^t P u \Vert _{H^{0,s}} + \Vert \, [^t P, B_s''] u \Vert + \Vert \partial _{x_0}u \Vert _{H^{0,s}} + \Vert [\partial _{x_0}, B_s''] u \Vert + \Vert \partial _{x_1} u \Vert _{H^{0,s}} \nonumber \\&\qquad \Vert [\partial _{x_1}, B_s''] u \Vert + \Vert u \Vert _{H^{0,s}} \big ) + \Vert B_s (x_0 - \overline{x}_0) \partial _{x_0} u \Vert + \Vert B_s' (x_0 - \overline{x}_0) \partial _{x_0} u \Vert \nonumber \\&\qquad \le \varepsilon \big ( \Vert \, ^t P u \Vert _{H^{0,s}} + \Vert \partial _{x_0}u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} \big ), \end{aligned}$$
(57)

where we considered \(|x_0-\overline{x}_0|< k < \varepsilon \).

On the other hand, it results

$$\begin{aligned} \varphi (x') [\, ^t P_1, A_s] u = B_{s-1} \partial _{x_0} u + B_{s} u + B_{s-1} u. \end{aligned}$$

Taking into account Lemma 1, we have

$$\begin{aligned}&\Vert \varphi (x') [\, ^t P_1, A_s ] \Vert \le \Vert B_{s-1} \partial _{x_0} u \Vert + \Vert B_{s} u \Vert + \Vert B_{s-1} u \Vert \nonumber \\&\qquad \le c \Vert (x_0 - \overline{x}_0) B_{s-1} \partial _{x_0}^2 u \Vert + c \Vert u \Vert _{H^{0,s}} \nonumber \\&\qquad \le c \Vert (x_0 - \overline{x}_0) B_{s-1} P u \Vert + c \Vert (x_0 - \overline{x}_0) B_{s} \partial _{x_1} u \Vert \nonumber \\&\qquad + c \Vert (x_0 - \overline{x}_0) B_{s}' (x_0 - \alpha (x')) \partial _{x_2} u \Vert \nonumber \\&\qquad + c \Vert (x_0 - \overline{x}_0) B_{s}'' u \Vert + c \Vert (x_0 - \overline{x}_0) \partial _{x_0} u \Vert _{H^{0,s}} \nonumber \\&\qquad \le c \Vert (x_0 - \overline{x}_0) P u \Vert _{H^{0,s}} + c \Vert (x_0 - \overline{x}_0) \partial _{x_1} u \Vert _{H^{0,s}} \nonumber \\&\qquad + c \Vert (x_0 - \overline{x}_0) (x_0 - \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} \nonumber \\&\qquad + c \Vert (x_0 - \overline{x}_0) u \Vert _{H^{0,s}} + c \Vert (x_0 - \overline{x}_0) \partial _{x_0} u \Vert _{H^{0,s}} \nonumber \\&\qquad \le \varepsilon ( \Vert P u \Vert _{H^{0,s}} + \Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} \nonumber \\&\qquad + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} ), \end{aligned}$$
(58)

where \(B_s\), \(B_s'\), \(B_s''\) are pseudodifferential operators of order s, \(B_{s-1}\) is a pseudodifferential operator of order \(s-1\) and we supposed that \(0< |x_0- \overline{x}_0| < \frac{\varepsilon }{c}\).

It is easy to obtain

$$\begin{aligned} \Vert \varphi (x') [\, ^t P_0, A_s ] u \Vert\le & {} c \Vert u \Vert _{H^{0,s}} \nonumber \\\le & {} c \Vert (x_0 - \overline{x}_0) \partial _{x_0} u \Vert _{H^{0,s}} \nonumber \\\le & {} \varepsilon \Vert \partial _{x_0} u \Vert ^2_{H^{0,s}}. \end{aligned}$$
(59)

By using (57), (58), (59), it follows

$$\begin{aligned}&\Vert \varphi (x') [\, ^t P, A_s ] u \Vert \\&\quad \le \varepsilon \big ( \Vert \, ^t P u \Vert _{H^{0,s}} + \Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} \big ). \end{aligned}$$

Making use of (46), (54) and the previous estimate, the claim is achieved. \(\square \)

With analogous techniques used to prove Theorem 12 but making use of Theorems 3 and 10 instead of Theorems 4 and 11, respectively, we can establish the following relevant estimate.

Theorem 13

Let us suppose that assumptions (i), (ii) and (iii) hold. For every \(\overline{x}_0 \ge 0\) and for every \(s < 0\) there exist \(k > 0\) and \(c > 0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0, s}} + \Vert (x_0 -\alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} \le c \Vert \, ^t Pu \Vert _{H^{0,s}}, \\&\quad \quad \ \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq [\overline{x}_0, \overline{x}_0+k[ \times \varOmega _0 = \varOmega _{\overline{x}_0,k}, \ L'u \cdot n'|_S=0. \end{aligned}$$

6 Global estimates

Now, we obtain a global estimate very useful in order to prove the existence of a solution to the Cauchy–Neumann problem (1).

Theorem 14

Let us suppose that assumptions (i), (ii) and (iii) hold. For every \(h > 0\) and \(s \le 0\) there exists \(c>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} \le c \Vert \, ^t Pu \Vert _{H^{0,-s}}, \\&\qquad \qquad \qquad \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _h, \ D'u \cdot n'|_S =0. \end{aligned}$$

Proof

Let \(h > 0\), setting \(\varOmega _h = [0, h[ \times \varOmega _0\), for the compactness of \([0, h] \times \overline{\varOmega }_0\), there exists a finite number of subsets \(\{ \varOmega _1, \varOmega _2, \ldots , \varOmega _p \}\) of \(\varOmega _h\), given by

$$\begin{aligned} \varOmega _1 =[0,k_1[ \times \varOmega _0, \ \varOmega _2 =[k_1',k_2[ \times \varOmega _0, \ldots , \ \varOmega _p =[k_{p-1}',k_p[ \times \varOmega _0, \end{aligned}$$

with \(k_0 =0\), \(k_p=h\), \(k_{i-1}< k_i'< k_i\), for every \(i=1,\ldots ,p\), and such that (45) holds in every \(\varOmega _i\), for \(i=1,\ldots ,p\).

Let \(u \in C_0^{\infty }(\varOmega _h)\), with \(D'u \cdot n'|_S = 0\), let \(\varphi \in C_0^{\infty }([0,k_1[)\), with \(\varphi \equiv 1\) on \([0,k_1'[\) and \(0 \le \varphi \le 1\) in \([0, k_1[\). Rewriting (45) for \(\varphi u\), it results

$$\begin{aligned}&\Vert \partial _{x_0} \varphi u \Vert _{H^{0,s}} + \Vert \partial _{x_1} \varphi u \Vert _{H^{0,s}} + \Vert (x_0- \alpha (x')) \partial _{x_2} \varphi u \Vert _{H^{0,s}} + \Vert \varphi u \Vert _{H^{0,s}} \\&\quad \le c \Vert P \varphi u \Vert _{H^{0,s}} \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \Vert [P, \varphi ] u \Vert _{H^{0,s}} \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \Vert \partial _{x_0} \varphi \partial _{x_0} u \Vert _{H^{0,s}} + c \Vert (\partial _{x_0}^2 \varphi ) u \Vert _{H^{0,s}} \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \Vert \partial _{x_0} u \Vert _{H^{0,s}([k_1',k_1[ \times \varOmega _0)} + c \Vert u \Vert _{H^{0,s}([k_1',k_1[ \times \varOmega _0)} \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \Vert \partial _{x_0} u \Vert _{H^{0,s}([k_1',k_2'[ \times \varOmega _0)} + c \Vert u \Vert _{H^{0,s}([k_1',k_2'[ \times \varOmega _0)} \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \Vert \partial _{x_0} \varphi _1 u \Vert _{H^{0,s}([k_1',k_2[ \times \varOmega _0)} + c \Vert \varphi _1 u \Vert _{H^{0,s}([k_1',k_2[ \times \varOmega _0)}, \end{aligned}$$

where \(\varphi _1 \in C_0^{\infty }(\varOmega _0)\) such that \(\mathrm{supp} \, \varphi _1 \subseteq [k_1',k_2[\), \(\varphi _1 \equiv 1\) in \([k_1',k_2'] \times \varOmega _0\).

We can deduce that

$$\begin{aligned}&\Vert \partial _{x_0} \varphi _{i-1} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} \varphi _{i-1} u \Vert _{H^{0,s}} + \Vert (x_0- \alpha (x')) \partial _{x_2} \varphi _{i-1} u \Vert _{H^{0,s}} + \Vert \varphi _{i-1} u \Vert _{H^{0,s}} \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \Vert \partial _{x_0} \varphi _i u \Vert _{H^{0,s}([k_i',k_{i+1}[ \times \varOmega _0)} + c \Vert \varphi _i u \Vert _{H^{0,s}([k_i',k_{i+1}[ \times \varOmega _0)}, \end{aligned}$$

where \(\varphi _0 = \varphi \) and \(\varphi _i \in C_0^{\infty } ([0,h[)\) such that \(\mathrm{supp} \, \varphi _i \subseteq [k_i',k_{i+1}[\), for every \(i = 1, \ldots , p\).

On the other hand, we have

$$\begin{aligned}&\Vert \partial _{x_0} \varphi _{p-1} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} \varphi _{p-1} u \Vert _{H^{0,s}} + \Vert (x_0- \alpha (x')) \partial _{x_2} \varphi _{p-1} u \Vert _{H^{0,s}} + \Vert \varphi _{p-1} u \Vert _{H^{0,s}} \nonumber \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \Vert \partial _{x_0} \varphi _p u \Vert _{H^{0,s}(\varOmega _p)} + c \Vert \varphi _p u \Vert _{H^{0,s}(\varOmega _p)} \nonumber \\&\quad \le c \Vert P u \Vert _{H^{0,s}} + c \left( \Vert \partial _{x_0} u \Vert _{H^{0,s}(\varOmega _p)} + \Vert u \Vert _{H^{0,s}(\varOmega _p)} \right) \nonumber \\&\quad \le c \Vert P u \Vert _{H^{0,s}}. \end{aligned}$$
(60)

By using (47), (60) and proceeding by recurrence on i, we easily obtain

$$\begin{aligned}&\Vert \partial _{x_0} \varphi _{i} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} \varphi _{i} u \Vert _{H^{0,s}} + \Vert (x_0- \alpha (x')) \partial _{x_2} \varphi _{i} u \Vert _{H^{0,s}} \\&\quad + \Vert \varphi _{i} u \Vert _{H^{0,s}} \le c \Vert P u \Vert _{H^{0,s}}, \end{aligned}$$

for \(i = 1, \ldots , p\). Taking into account the previous inequality, we have

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} + \Vert (x_0- \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} \le c \Vert P u \Vert _{H^{0,s}}, \nonumber \\&\qquad \qquad \qquad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _h, \ D'u \cdot n'|_S =0. \end{aligned}$$
(61)

For the arbitrariness of h, (61) holds for every \(u \in C_0^{\infty }(\overline{\varOmega })\) such that \(D'u \cdot n'|_S=0\). The proof is thereby completed. \(\square \)

Proceeding analogously as in the proof of Theorem 14 but by using Theorems 3 and 10 instead of Theorems 2 and 7, respectively, we obtain a global estimate for the Cauchy–Robin problem (2).

Theorem 15

Let us suppose that assumptions (i), (ii) and (iii) hold. For every \(h > 0\) and \(s \le 0\) there exists \(c>0\) such that

$$\begin{aligned}&\Vert \partial _{x_0} u \Vert _{H^{0,s}} + \Vert \partial _{x_1} u \Vert _{H^{0,s}} + \Vert (x_0 - \alpha (x')) \partial _{x_2} u \Vert _{H^{0,s}} + \Vert u \Vert _{H^{0,s}} \le c \Vert \, ^t Pu \Vert _{H^{0,-s}}, \\&\qquad \qquad \qquad \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _h, \ L'u \cdot n'|_S =0. \end{aligned}$$

7 Existence and regularity results

This section is devoted to establish existence and regularity results for the Cauchy–Neumann problem (1) and the Cauchy–Robin problem (2).

Theorem 16

Let \(f \in H^r_{loc}(\overline{\varOmega })\), with \(r \ge 2\). Then, for every \(h>0\) there exists \(v \in H^{0,s}(\varOmega _h)\), with \(0 \le s \le r\) such that

$$\begin{aligned} (v, \, ^tPu) = (f,u), \quad \forall u \in C^{\infty }_0(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _h, \ D' u \cdot n'|_S=0. \end{aligned}$$

Proof

Let \(B'\) be the subspace of distributions of \(H^{0,-s}(\varOmega _h)\) defined on test functions \(\varphi \in C^{\infty }_0([0,h[ \times \overline{\varOmega }_0)\) such that \(D'\varphi \cdot u'|_S = 0\). Let B be contained in \(B'\). Let us define a linear continuous functional in B, as follows

$$\begin{aligned} F(\psi )=F(\, ^t Pu)=(f,u), \quad \forall \psi \in B. \end{aligned}$$

Taking into account Theorem 12, it results

$$\begin{aligned} |F(\psi ) | = |(f,u)| \, \le \Vert f \Vert _{H^{0,s}} \Vert u \Vert _{H^{0,-s}} \, \le c \Vert f \Vert _{H^{0,s}} \Vert \, ^t P u \Vert _{H^{0,-s}}\, \le c' \Vert \psi \Vert _{H^{0,-s}}. \end{aligned}$$

As a consequence, we can extend F in \(H^{0,-s}(\varOmega _h) \cap B'\). Making use of a representation theorem, there exists \(v \in H^{0,s}(\varOmega _h) \cap B'^*\) such that

$$\begin{aligned} F(w)= (v, w), \quad \forall w \in H^{0,-s}(\varOmega _h). \end{aligned}$$

Then, it results

$$\begin{aligned} F(\psi ){=} (v, \psi ) =(v, \, ^t Pu) {=} (f,u), \quad \forall u \in C^{\infty }_0(\overline{\varOmega }):\mathrm{supp} \, u \subseteq \varOmega _h, D' u \cdot n'|_S=0. \end{aligned}$$

\(\square \)

We proved that for every \(h > 0\) there exists \(v \in H^{0,s}(\varOmega _h)\), with \(0 \le s \le r\), such that

$$\begin{aligned} P v = f, \quad \hbox {in the sense of distributions}. \end{aligned}$$

Hence, v verifies the following equality:

$$\begin{aligned} \partial _{x_0}^2 v + a_0(x) \partial _{x_0} v + b(x) v = f+ \left( P- \partial _{x_0}^2 -a_0(x) \partial _{x_0} - b(x) \right) v. \end{aligned}$$

Since \(f+ \left( P- \partial _{x_0}^2 -a_0(x) \partial _{x_0} - b(x) \right) v \in H^{0,r-2}(\varOmega _h)\), we have \(v \in H^{2,r-2}(\varOmega _h)\). Therefore, proceeding by induction, we deduce

$$\begin{aligned} v\in H^{s,r-s}(\varOmega _h), \quad \forall s \le r. \end{aligned}$$

As a consequence, it follows

$$\begin{aligned} v\in H^{r}(\varOmega _h). \end{aligned}$$

Then, there exists \(v \in H^r(\varOmega _h)\), with \(r \ge 2\), such that

$$\begin{aligned} (v, \, ^tPu) = (f, u), \quad \forall u \in C^{\infty }_0(\varOmega _h): \ D' u \cdot n'|_S=0. \end{aligned}$$
(62)

Taking into account (62) and integrating by parts, we obtain

$$\begin{aligned} (Pv, u) = (f, u), \quad \forall u \in C^{\infty }_0(\mathrm{int} \, \varOmega _h). \end{aligned}$$
(63)

Hence, it results

$$\begin{aligned} Pv=f, \quad \mathrm{a.e. \ in} \ \varOmega _h. \end{aligned}$$

Integrating again by parts in (62), for every \(u \in C_0^{\infty }(\varOmega _h)\) such that \(u|_{\varOmega _0}=0\), \(\partial _{x_0} u|_{\varOmega _0}=0\), \(D'u \cdot n'|_S=0\), we have

$$\begin{aligned}&(Pv, u) - \int _S \left( \partial _{x_1} v \cdot n_1 + (x_0 - \alpha (x'))^2 \partial _{x_2} v \cdot n_2 - a_1(x) n_1 v - a_2(x) n_2 v \right) u d \sigma \nonumber \\&\quad \quad = (f, u), \end{aligned}$$
(64)

which implies

$$\begin{aligned} \int _S (L'v \cdot n') u d\sigma =0. \end{aligned}$$

Then, it follows

$$\begin{aligned} L'v \cdot n'|_S =0. \end{aligned}$$

Finally, integrating again by parts in (62), for every \(u \in C_0^{\infty }(\varOmega _h)\) such that \(u|_S = 0\), \(\partial _{x_i} u|_S = 0\), with \(i = 1,2\), and supposing that either \(\partial _{x_0} u|_{\varOmega _0} = 0\) or \(u|_{\varOmega _0} = 0\), we get

$$\begin{aligned} (Pv, u) - \int _{\varOmega _0} v \partial _{x_0} u dx_1 dx_2 = (f, u). \end{aligned}$$
(65)

As a consequence, it results

$$\begin{aligned} v|_{\varOmega _0} =0. \end{aligned}$$

Moreover, we have

$$\begin{aligned} (Pv, u) - \int _{\varOmega _0} \partial _{x_0} v \cdot u dx_1 dx_2 = (f, u). \end{aligned}$$
(66)

Hence, we obtain

$$\begin{aligned} \partial _{x_0} v|_{\varOmega _0} =0. \end{aligned}$$

Making use of (63), (64), (65) and (66), it follows that there exists \(v \in H^r(\varOmega _h)\) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} Pv= f, \quad \mathrm{in} \ \varOmega _h,\\ v|_{\varOmega _0}=0, \ \frac{d v}{dn}|_{\varOmega _0}=0, \ L'v \cdot n'|_S=0. \end{array}\right. } \end{aligned}$$

Instead if B is the space of functions \(\psi = \, ^t Pu\), with \(u \in C_0^{\infty }(\overline{\varOmega })\) such that \(\mathrm{supp} \, u \subseteq \overline{\varOmega }_h\) and \(L'u \cdot n'|_S=0\), proceeding as done before, we obtain the claim.

Moreover, with analogous proof of Theorem 16 but applying Theorem 13 instead of Theorem 12 and considering as \(B'\) the subspace of distributions of \(H^{0,-s}(\varOmega _h)\) defined on test functions \(\varphi \in C^{\infty }([0,h[ \times \overline{\varOmega }_0)\) such that \(L'\varphi \cdot n'|_S=0\), the following results holds.

Theorem 17

Let \(f \in H^r_{loc}(\overline{\varOmega })\), with \(r \ge 2\). Then, for every \(h >0\) there exists \(v \in H^{0,s} (\varOmega _h)\), with \(0 \le s \le r\) such that

$$\begin{aligned} (v, \, ^t P u) = (f, u), \quad \forall u \in C_0^{\infty }(\overline{\varOmega }): \ \mathrm{supp} \, u \subseteq \varOmega _h, \ L'u \cdot n'|_S=0. \end{aligned}$$
(67)

Integrating by parts (67), as done before, it follows that there exists \(v \in H^r(\varOmega _h)\) such that

$$\begin{aligned} {\left\{ \begin{array}{ll} Pv= f, \quad \mathrm{in} \ \varOmega _h,\\ v|_{\varOmega _0}=0, \ \frac{d v}{dn}|_{\varOmega _0}=0, \ D'v \cdot n'|_S=0. \end{array}\right. } \end{aligned}$$

with \(f \in H^r_{loc}(\overline{\varOmega })\).

8 Uniqueness of the solution

In order to establish the uniqueness of a solution to the problem (1), we prove, as a first step, the existence of a solution to the following problems

$$\begin{aligned} {\left\{ \begin{array}{ll} \, ^t Pw= f, \quad \mathrm{in} \ \varOmega _h= ]0,h[ \times \varOmega _0 \\ w(h,x')=0, \ \partial _{x_0} w(h,x')=0, \ D'w \cdot n'|_S=0 \end{array}\right. } \end{aligned}$$
(68)

and

$$\begin{aligned} {\left\{ \begin{array}{ll} \, ^t Pw= f, \quad \mathrm{in} \ \varOmega _h= ]0,h[ \times \varOmega _0 \\ w(h,x')=0, \ \partial _{x_0} w(h,x')=0, \ L'w \cdot n'|_S=0 \end{array}\right. } \end{aligned}$$
(69)

with \(f \in H^r(\varOmega _h)\). To this aim, we can proceed in analogous way as done in the proofs of the theorems in Sects. 4567 considering, for every \(\overline{x}_0 \in ]0, h[\),

$$\begin{aligned} \varOmega _{\overline{x}_0,k}= & {} \left\{ x \in \overline{\varOmega }: x_0 \in ]\overline{x}_0-k, \overline{x}_0[ \times \varOmega _0 \right\} , \\ \varOmega _{\overline{x}_0,k, \eta }= & {} \left\{ x \in \varOmega _{\overline{x}_0,k}: \left( \frac{1}{5} + \eta \right) \alpha (x') + \left( \frac{4}{5} - \eta \right) \overline{x}_0 \le x_0 \le \eta \overline{x}_0 + (1-\eta ) \alpha (x') \right\} , \\ \varOmega _{\overline{x}_0,k, \eta }'= & {} \left\{ x \in \varOmega _{\overline{x}_0,k, \eta }: \left| \partial _{x_1} \alpha (x') \right| \ge 1 \right\} , \\ \varOmega _{\overline{x}_0,k, \eta , \eta '}'= & {} \left\{ x \in \varOmega _{\overline{x}_0,k, \eta }: \left| \partial _{x_1} \alpha (x') \right| \ge 1 - \eta ' \right\} , \end{aligned}$$

where \(\frac{4}{5}< \eta < 1\) and \(0< k < h\), and the operator \(\, ^t P\) instead of the operator P. With these modifications and under assumptions (i), (ii) and (iii), we obtain that there exist solutions to problems (68) and (69), with \(f \in H^r_{loc} (\varOmega _0)\). As a consequence, there exists a solution \(w \in C^{\infty }(\varOmega _h)\) to the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \, ^t Pw= 0, \quad \mathrm{in} \ \varOmega _h, \\ w(h,x')=0, \ \partial _{x_0} w(h,x')=\varphi (x'), \ D'w \cdot n'|_S=0, \end{array}\right. } \end{aligned}$$
(70)

and exists a solution \(w \in C^{\infty }(\varOmega _h)\) to the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \, ^t Pw= 0, \quad \mathrm{in} \ \varOmega _h, \\ w(h,x')=0, \ \partial _{x_0} w(h,x')=\varphi (x'), \ L'w \cdot n'|_S=0 \end{array}\right. } \end{aligned}$$
(71)

with \(\varphi \in C_0^{\infty }(\varOmega _0)\).

Now, if \(v \in H^r_{loc} (\varOmega _{h'})\), with \(r \ge 2\), is a solution to the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} Pv= 0, \quad \mathrm{in} \ \varOmega _{h'}= ]0,h'[ \times \varOmega _0, \ \mathrm{with} \ h' \ge h, \\ v(0,x')=0, \ \partial _{x_0} v(0,x')=0, \ L'v \cdot n'|_S=0, \end{array}\right. } \end{aligned}$$

and w is a solution to (70), it results

$$\begin{aligned} 0 = (v, \, ^tPw) = (Pv, w) + \int _{\varOmega _0} v(h, x') \varphi (x') dx' = \int _{\varOmega _0} v(h, x') \varphi (x') dx'. \end{aligned}$$

For the arbitrary of \(\varphi \), it follows that \(v(h,x') = 0\). Hence, we get that \(v = 0\) in \(\varOmega _{h'} = ]0,h'[ \times \varOmega _0\). Moreover, for the arbitrary of \(h'\), it results that, under assumptions (i) and (ii), the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} Pv= f, \quad \mathrm{in} \ \varOmega = ]0,+ \infty [ \times \varOmega _0, \\ v|_{\varOmega _0}=0, \ \partial _{x_0} v|_{\varOmega _0}=0, \ L'v \cdot n'|_S=0, \end{array}\right. } \end{aligned}$$

with \(f \in H^2_{loc} (\overline{\varOmega })\), admits a unique solution \(v \in H^r_{loc} (\overline{\varOmega })\), with \(r \ge 2\). Instead, let \(v \in H^r_{loc}(\overline{\varOmega })\) be a solution to the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} Pv= 0, \quad \mathrm{in} \ \varOmega = ]0,h'[ \times \varOmega _0, \ \mathrm{with} \ h' \ge h \\ v(0,x')=0, \ \partial _{x_0} v(0,x')=0, \ D'v \cdot n'|_S=0, \end{array}\right. } \end{aligned}$$

and w is a solution to (71), it follows

$$\begin{aligned} 0 = (v, \, ^tPw) = (Pv, w) + \int _{\varOmega _0} v(h, x') \varphi (x') dx' = \int _{\varOmega _0} v(h, x') \varphi (x') dx'. \end{aligned}$$

Therefore, under assumptions (i), (ii) and (iii), also the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} Pv= f, \quad \mathrm{in} \ \varOmega = ]0,+ \infty [ \times \varOmega _0, \\ v|_{\varOmega _0}=0, \ \partial _{x_0} v|_{\varOmega _0}=0, \ D'v \cdot n'|_S=0, \end{array}\right. } \end{aligned}$$

with \(f \in H^r_{loc}(\overline{\varOmega })\), admits a unique solution.