Skip to main content
Log in

Asymptotic behavior of solutions for nonlinear parabolic operators with natural growth term and measure data

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

We are interested in the asymptotic behavior, as t tends to \(+\infty \), of finite energy solutions and entropy solutions \(u_{n}\) of nonlinear parabolic problems whose model is

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t}-\Delta _{p}u+g(u)|\nabla u|^{p}=\mu &{}\text { in }(0,T)\times \Omega ,\\ u(0,x)=u_{0}(x)&{}\text { in }\Omega ,\\ u(t,x)=0&{}\text { on }(0,T)\times \partial \Omega \end{array}\right. } \end{aligned}$$
(0.1)

where \(\Omega \subseteq \mathbb {R}^{N}\) is a bounded open set, \(N\ge 3\), \(u_{0}\in L^{1}(\Omega )\) is a nonnegative initial data, while \(g:\mathbb {R}\mapsto \mathbb {R}\) is a real function in \(C^{1}(\mathbb {R})\) which satisfies sign condition with positive derivative and \(\mu \) is a nonnegative measure independent on time which does not charge sets of null p-capacity.

Résumé

Comportement asymptotique des solutions pour des opérateurs paraboliques non linéaire avec un terme de croissance naturelle et une donnée mesure. Nous somme interessés au comportement asymptotique, quant t tend vers \(+\infty \), des solutions énergétiques finies et des solutions entropiques \(u_{n}\) des problèmes paraboliques non linéaires dont le modèle est (0.1) où \(\Omega \subseteq \mathbb {R}^{N}\) est un ouvert borné, \(N\ge 3\), \(u_{0}\in L^{1}(\Omega )\) est une donnée initiale non négative, tandis que \(g:\mathbb {R}\mapsto \mathbb {R}\) est une fonction réelle de classe \(C^{1}(\mathbb {R})\) qui satisfait la condition du signe avec une dérivée positive et \(\mu \) est une mesure non négative indépendante du temps qui ne prend pas en charge les parties de p-capacité nulle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arosio, A.: Asymptotic behavior as \(t\rightarrow +\infty \) of solutions of linear parabolic equations with discontinuous coefficients in a bounded domain. Commun. Part. Differ. Equ. 4(7), 769–794 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Abdellaoui, M., Azroul, E.: Renormalized solutions for nonlinear parabolic equations with general measure data. Electron. J. Differ. Equ. No. 132, 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abdellaoui, M.: On some nonlinear elliptic and parabolic problems with general measure data. Ph.D. Thesis, Fez, (2018)

  4. Abdellaoui, M., Azroul, E.: Non-stability result of entropy solutions for nonlinear parabolic problems with singular measures. E. J. Elliptic Parabol. Equ. 5(1), 1–26 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Abdellaoui, M., Azroul, E.: Renormalized solutions to nonlinear parabolic problems with blowing up coefficients and general measure data. Ricerche di Matematica 68(2), 745–767 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Abdellaoui, M., Azroul, E.: Homogenization of a nonlinear parabolic problem corresponding to a Leray-Lions monotone operator with right-hand side measure. SeMA J. (2019). https://doi.org/10.1007/s40324-019-00197-8

    Article  MATH  Google Scholar 

  7. Alvino, A., Betta, F., Mercaldo, A.: Comparison principle for some classes of nonlinear elliptic equations. J. Differ. Equ. 249, 3279–3290 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Azroul, E., Benkirane, A., Srati, M.: Introduction to fractional Orlicz–Sobolev spaces. (2018). arXiv preprint arXiv:1807.11753

  9. Arcoya, D., de Coster, C., Jeanjean, L., Tanaka, K.: Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions. J. Math. Anal. Appl. 420(1), 772–780 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Arcoya, D., de Coster, C., Jeanjean, L., Tanaka, K.: Continuum of solutions for an elliptic problem with critical growth in the gradient. J. Funct. Anal. 268(8), 2298–2335 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Arcoya, D., Carmona, J., Martínez-Aparicio, P.J.: Gelf and type quasilinear elliptic problems with quadratic gradient terms. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(2), 249–265 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Arcoya, D., Carmona, J., Martínez-Aparicio, P.J.: Comparison principle for elliptic equations in divergence with singular lower order terms having natural growth. Commun. Contemp. Math. 1650013, 11 (2016)

    MATH  Google Scholar 

  13. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equ. 222, 21–62 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Regularity and nonuniqueness results for parabolic problems arising in some physical models, having natural growth in the gradient. J. de Mathématiques Pures et Appliquées 90, 242–269 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Abdellaoui, B., Dall’Aglio, A., Peral, I., Segura de León, S.: Global existence for Nonlinear parabolic problems with measure data- Applications to non-uniqueness for parabolic problems with critical gradient terms. Adv. Nonlinear Stud. 11, 733–780 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear \(p(x)\)-elliptic equations. Electron. J. Differ. Equ. 68, 1–27 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Andreu, F., Mazón, J.M., Segura De Léon, S., Toledo, J.: Existence and uniqueness for a degenerate parabolic equation with \(L^{1}\)-data. Trans. Am. Math. Soc. 351(1), 285–306 (1999)

    MATH  Google Scholar 

  18. Arcoya, D., Segura de León, S.: Uniqueness of solutions for some elliptic equations with a quadratic gradient term. ESAIM Control Optim. Calc. Var. 16(2), 327–336 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Braides, A.: Convergence for Beginners. vol. 22 of Oxford Lecture series in Mathematics and its Applications. Oxford University Press, Oxford (2002)

    Google Scholar 

  20. Barles, G., Busca, J.: Existence and comparison results for fully non linear degenerate elliptic equations without zeroth-order term. Commun. Partial Differ. Equ. 26, 2323–2337 (2001)

    MATH  Google Scholar 

  21. Barles, G., Blanc, A., Georgelin, C., Kobylanski, M.: Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 28(28), 381–404 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Barles, G., Da Lio, F.: On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations. J. Math. Pures Appl. 83, 53–75 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Betta, M.F., Di Nardo, R., Mercaldo, A., Perrotta, A.: Gradient estimates and comparison principle for some nonlinear elliptic equations. Commun. Pure Appl. Anal. 14, 897–922 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17(3&3), 641–655 (1992)

    MathSciNet  MATH  Google Scholar 

  26. Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire. 13, 539–551 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Boccardo, L., Gallouët, T., Orsina, L.: Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math. 73, 203–223 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Benachour, S., Karch, G., Laurençot, P.: Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations. J. Math. Pures Appl. 9 83(10), 1275–1308 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Berestycki, H., Kamin, S., Sivashinsky, G.: Metastability in a flame front evolution equation. Interfaces Free Bound. 3(4), 361–392 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Barles, G., Murat, F.: Uniqueness and maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Ration. Mech. Anal. 133(1), 77–101 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Betta, F., Mercaldo, A., Murat, F., Porzio, M.: Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in \(L^{1}(\Omega )\). A tribute to J. L. Lions. ESAIM Control Optim. Calc. Var. 8, 239–272 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Betta, F., Mercaldo, A., Murat, F., Porzio, M.: Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal. 63, 153–170 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Boccardo, L., Murat, F., Puel, J.-P.: Existence results for some quasilinear parabolic equations. Nonlinear Anal. T.M.A. 13, 378–392 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Blanchard, D., Porretta, A.: Nonlinear parabolic equations with natural growth terms and measure initial data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30(4), 583–622 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Barles, G., Porretta, A.: Uniqueness for unbounded solutions to stationary viscous Hamilton–Jacobi equations. Ann. Sci. Norm. Super. Pisa Cl. Sci. 5(5), 107–136 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Brezis, H.: Analyse Fonctionnelle: Théorie et Applications. Masson, Paris (1983)

    MATH  Google Scholar 

  37. Ben-Artzi, A., Souplet, P., Weissler, F.B.: The local theory for the viscous Hamilton–Jacobi equations in Lebesgue spaces. J. Math. Pures Appl. 9(81), 343–378 (2002)

    MathSciNet  MATH  Google Scholar 

  38. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.L.: An \(L^{1}-\)theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 241–273 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Chipot, M.M.: Asymptotic Issues for Some Partial Differential Equations. Imperial College Press, London (2016)

    MATH  Google Scholar 

  40. Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    MathSciNet  MATH  Google Scholar 

  41. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

    MATH  Google Scholar 

  42. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  43. Dall’Aglio, A., Giachetti, D., Puel, J.-P.: Nonlinear parabolic equations with natural growth in general domains. Boll. Un. Mat. Ital. Sez. B 8, 653–683 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Dall’Aglio, A., Giachetti, D., Segura de Leòn, S.: Nonlinear parabolic problems with a very general quadratic gradient term. Differ. Integral Equ. 20(4), 361–396 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Dall’Aglio, A., Giachetti, D., Segura de Leòn, S.: Global existence for parabolic problems involving the \(p\)-Laplacian and a critical gradient term. Indiana Univ. Math. J. 58(1), 1–48 (2009)

    MathSciNet  MATH  Google Scholar 

  46. DiPerna, R.-J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations, global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    MathSciNet  MATH  Google Scholar 

  47. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28, 741–808 (1999)

    MathSciNet  MATH  Google Scholar 

  48. Droniou, J., Prignet, A.: Equivalence between entropy and renormalized solutions for parabolic equations with smooth measure data. No DEA 14(1–2), 181–205 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Droniou, J., Porretta, A., Prignet, A.: Parabolic capacity and soft measures for nonlinear equations. Potential Anal. 19(2), 99–161 (2003)

    MathSciNet  MATH  Google Scholar 

  50. Damascelli, L., Sciunzi, B.: Regularity, monotonicity and symmetry of positive solutions of \(m\)-Laplace equations. J. Differ. Equ. 206(2), 483–515 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  52. Ferone, V., Posteraro, M.R., Rakotoson, J.M.: Nonlinear parabolic problems with critical growth and unbounded data. Indiana Univ. Math. J. 50(3), 1201–1215 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Fukushima, M., Sato, K., Taniguchi, S.: On the closable part of pre-Dirichlet forms and the fine supports of underlying measures. Osaka J. Math. 28, 517–535 (1991)

    MathSciNet  MATH  Google Scholar 

  54. Heinonen, J., Kilpelainen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  55. Grenon, G.: Asymptotic behaviour for some quasilinear parabolic equations. Nonlinear Anal. 20(7), 755–766 (1993)

    MathSciNet  MATH  Google Scholar 

  56. Gilding, B.H., Guedda, M., Kersner, R.: The Cauchy problem for \(u_{t}=\Delta u+|\nabla u|^{q}\). J. Math. Anal. Appl. 284(2), 733–755 (2003)

    MathSciNet  MATH  Google Scholar 

  57. Guibé, O., Mercaldo, A.: Uniqueness results for noncoercive nonlinear elliptic equations with two lower order terms. Commun. Pure Appl. Anal. 7, 163–192 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Grenon, N.: Existence results for some quasilinear parabolic problems. Ann. Mat. Pura Appl. 4(165), 281–313 (1993)

    MathSciNet  MATH  Google Scholar 

  59. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    MATH  Google Scholar 

  60. Korkut, L., Pašić, M., Žubrinić, D.: Some qualitative properties of solutions of quasilinear elliptic equations and applications. J. Differ. Equ. 170(2), 247–280 (2001)

    MathSciNet  MATH  Google Scholar 

  61. Lions, J.-L.: Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaire. Dunod et Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  62. Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques semi-linéaires par les méthodes de Minty et Browder. Bull. Soc. Math. France 93, 97–107 (1965)

    MathSciNet  MATH  Google Scholar 

  63. Leonori, T., Magliocca, M.: Comparison results for unbounded solutions for a parabolic Cauchy–Dirichlet problem with superlinear gradient growth. Commun. Pure Appl. Anal. 18(6), 2923–2960 (2019)

    MathSciNet  Google Scholar 

  64. Leonori, T., Petitta, F.: Asymptotic behavior of solutions for parabolic equations with natural growth term and irregular data. Asymptot. Anal. 48(3), 219–233 (2006)

    MathSciNet  MATH  Google Scholar 

  65. Leonori, T., Porretta, A.: Large solutions and gradient bounds for quasilinear elliptic equations. Commun. Partial Differ. Equ. 41(6), 952–998 (2016)

    MathSciNet  MATH  Google Scholar 

  66. Leonori, T., Petitta, F.: Local estimates for parabolic equations with nonlinear gradient terms. Calc. Var. Partial Differ. Equ. 42(1), 153–187 (2011)

    MathSciNet  MATH  Google Scholar 

  67. Leonori, T., Porretta, A., Riey, G.: Comparison principles for \(p\)-Laplace equations with lower order terms. Annali di Matematica 196, 877 (2017)

    MathSciNet  MATH  Google Scholar 

  68. Ladyzhenskaja, O.A., Solonnikov, V., Uraltceva, N.N.: Linear and Quasilinear Parabolic Equations. Academic Press, Cambridge (1970)

    Google Scholar 

  69. Murat, F.: Équations elliptiques non linéaires avec second membre \(L^{1}\) ou mesure. In: Comptes Rendus du 26ème Congrés National d’Analyse Numérique. Les Karellis A12–A24 (1994)

  70. Mabdaoui, M., Moussa, H., Rhoudaf, M.: Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces. M. Anal. Math. Phys. 7, 47 (2017)

    MathSciNet  MATH  Google Scholar 

  71. Malusa, A., Prignet, A.: Stability of renormalized solutions of elliptic equations with measure data. Atti Sem. Mat. Fis. Univ. Modena 52, 117–134 (2004)

    MathSciNet  MATH  Google Scholar 

  72. Murat, F.: \(H\)-convergence. In: Seminaire d’Analyse Fonctionnelle et Numerique de l’Universite d’Alger (1977)

  73. Orsina, L., Porzio, M.M.: \(L^{\infty }(Q)\)-estimate and existence of solutions for some nonlinear parabolic equations. Boll. U.M.I. Sez. B. 6–B, 631–647 (1992)

    MathSciNet  MATH  Google Scholar 

  74. Orsina, L., Porretta, A.: Strong stability results for nonlinear elliptic equations with respect to very singular perturbation of the data. Commun. Contemp. Math. 3(2), 259–285 (2001)

    MathSciNet  MATH  Google Scholar 

  75. Palmeri, M.C.: Entropy subsolution and supersolution for nonlinear elliptic equations in \(L^{1}\). Ricerche Mat. 53(2), 183–212 (2004)

    MathSciNet  MATH  Google Scholar 

  76. Pankov, A.A.: \(G\)-Convergence and Homogenization of Nonlinear Partial Differential Operators. Vinnitsa Polytechnical Institute, Vinnitsa (2013)

    MATH  Google Scholar 

  77. Petitta, F.: Renormalized solutions of nonlinear parabolic equations with general measure data. Ann. Mat. Pura ed Appl. 187(4), 563–604 (2008)

    MathSciNet  MATH  Google Scholar 

  78. Petitta, F.: Nonlinear parabolic equations with general measure data. Ph.D. Thesis, Università di Roma, Italy (2006)

  79. Petitta, F.: A non-existence result for nonlinear parabolic equations with singular measure data. Proc. R. Soc. Edinb. Sect. A Math. 139, 381–392 (2009)

    MathSciNet  MATH  Google Scholar 

  80. Petitta, F., Porretta, A.: On the notion of renormalized solution to nonlinear parabolic equations with general measure data. J. Elliptic Parab. Equ. 1, 201–214 (2015)

    MathSciNet  MATH  Google Scholar 

  81. Petitta, F.: Asymptotic behavior of solutions for parabolic operators of Leray–Lions type and measure data. Adv. Differ. Equ. 12(8), 867–891 (2007)

    MathSciNet  MATH  Google Scholar 

  82. Petitta, F.: Asymptotic behavior of solutions for linear parabolic equations with general measure data. C. R. Acad. Sci. Paris Ser. I344, 571–576 (2007)

    MathSciNet  MATH  Google Scholar 

  83. Petitta, F.: Large time behavior for solutions of nonlinear parabolic problems with sign-changing measure data. Electron. J. Differ. Equ. 132, 1–10 (2008)

    MathSciNet  MATH  Google Scholar 

  84. Pierre, M.: Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14, 522–533 (1983)

    MathSciNet  MATH  Google Scholar 

  85. Porretta, A.: Existence results for nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura ed Appl. (IV) 177, 143–172 (1999)

    MathSciNet  MATH  Google Scholar 

  86. Porretta, A.: Asymptotic behavior of elliptic variational inequalities with measure data. Appl. Anal. 73(3–4), 359–377 (1999)

    MathSciNet  MATH  Google Scholar 

  87. Porretta, A.: On the comparison principle for \(p\)-Laplace type operators with RST order terms. In: On the notions of solution to nonlinear elliptic problems: results and developments. Quad. Mat. 23, Dept. Math., Seconda Univ. Napoli, Caserta, pp. 459–497 (2008)

  88. Porretta, A.: Nonlinear equations with natural growth terms and measure data. Electron. J. Differ. Equ. Conf. 09, 183–202 (2002)

    MathSciNet  MATH  Google Scholar 

  89. Porretta, A.: Local estimates and large solutions for some elliptic equations with absorption. Adv. Differ. Equ. 3–4, 329–351 (2004)

    MathSciNet  MATH  Google Scholar 

  90. Porretta, A.: Elliptic and parabolic equations with natural growth terms and measure data. Ph.D. Thesis, Università di Roma “La Sapienza” (1999)

  91. Petitta, F., Ponce, A.C., Porretta, A.: Approximation of diffuse measures for parabolic capacities. C. R. Acad. Sci. Paris 346, 161–166 (2008)

    MathSciNet  MATH  Google Scholar 

  92. Petitta, F., Ponce, A.C., Porretta, A.: Diffuse measures and nonlinear parabolic equations. J. Evolut. Equ. 11(4), 861–905 (2011)

    MathSciNet  MATH  Google Scholar 

  93. Prignet, A.: Remarks on existence and uniqueness of solutions of elliptic problems with right hand side measures. Rend. Mat. 15, 321–337 (1995)

    MathSciNet  MATH  Google Scholar 

  94. Prignet, A.: Existence and uniqueness of entropy solutions of parabolic problems with \(L^{1}\) data. Nonlinear Anal. TMA 28, 1943–1954 (1997)

    MathSciNet  MATH  Google Scholar 

  95. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficientes discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258 (1965)

    MathSciNet  MATH  Google Scholar 

  96. Segura de Leon, S.: Existence and uniqueness for \(L^{1}\) data of some elliptic equations with natural growth. Adv. Differ. Equ. 8(11), 1377–1408 (2003)

    MathSciNet  MATH  Google Scholar 

  97. Schwartz, L.: Théorie des distributions à valeurs vectorielles I. Ann. Inst. Fourier (Grenoble) 7, 1–141 (1957)

    MathSciNet  MATH  Google Scholar 

  98. Spagnolo, S.: Convergence de solutions d’équations d’évolution. In: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 311–327. Pitagora, Bologna (1979)

  99. Trudinger, N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    MathSciNet  MATH  Google Scholar 

  100. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Springer, New York (1990)

    MATH  Google Scholar 

Download references

Acknowledgements

The author warmly thanks the referee for attracting his attention to the proof of the comparison result of Lemma 3.6 and the enlightening paper [67]. In the present work, the author drew much of its inspiration from the works of T. Leonori, F. Petitta and co-authors.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdellaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix (In connection with G-convergence)

Appendix (In connection with G-convergence)

In this section, we shall study, following an idea of [81], the connection between the G-convergence of a sequence \((u_{\tau })_{\tau >0}\) and the asymptotic behaviour of the corresponding solutions \(u_{\tau }(t,x)\) relative to the operators \(A:u\mapsto \text {div}(a(x,u_{\tau })_{\tau >0})\) when \(u_{\tau }(0,x)=u_{0}^{\tau }(x)=0\) in \(\Omega \). We prove a convergence result for entropy solutions of a nonlinear parabolic problem with nonnegative measure \(\mu \in {\mathcal {M}}_{0}(\Omega )\) with \(\mu \ne 0\) using the theory of G-convergence [6, 19, 42, 72, 76, 81]. To this aim, let us consider the following initial boundary value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} (u_{\tau })_{t}-\text {div}(a(x,u_{\tau }))+g(u_{\tau })|u_{\tau }|^{p}=\mu _{\tau }\text { in }Q=(0,T)\times \Omega ,\\ u_{\tau }(0,x)=0\text { in }\Omega ,\quad u_{\tau }(t,x)=0\text { on }(0,T)\times \partial \Omega \end{array}\right. } \end{aligned}$$
(5.1)

where \(T>0\) is any positive constant and \(\mu \in {\mathcal {M}}_{0}(\Omega )\) (\(\mu \ne 0\)) is a Radon measure with bounded variation which does not charge the sets of zero p-capacity and which does not depend on the time variable t (in accordance with the definition given in Theorem 2.3).

Theorem 5.1

Let \(\mu _{\tau }\in {\mathcal {M}}_{0}(\Omega )\) be a measure such that \(\mu _{\tau }\ne 0\). Let \(u_{\tau }(t,x)\) (\(\tau >0\)) be the entropy solution of parabolic problem (5.1) corresponding to \(\mu _{\tau }\) and \(v_{\tau }(x)\) the entropy solution of the following corresponding elliptic problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -{\text {div}}(a(x,v_{\tau }))+g(v_{\tau })|v_{\tau }|^{p}=\mu _{\tau }&{}\text { in }\Omega ,\\ u_{\tau }=0&{}\text { on }\partial \Omega . \end{array}\right. } \end{aligned}$$
(5.2)

Then, we have

$$\begin{aligned} \underset{\tau \rightarrow \infty }{\text {lim }}\underset{T\rightarrow \infty }{\text {lim }}u_{\tau }(t,x)=\underset{\tau \rightarrow \infty }{\text {lim }}v_{\tau }(x)=+\infty \text { a.e. in }\Omega . \end{aligned}$$

Proof

First, note that \(u_{\tau }(0,x)=u_{0}^{\tau }(x)=0\) (this condition is essential in order to deal with some difficulties) and suppose that \(\mu \in W^{-1,p'}(\Omega )\) (independent of time), we have

$$\begin{aligned} \mu \in W^{-1,p'}(\Omega )\quad \text { if and only if }\mu =-\text {div}(G)\text { with }G\in L^{p'}(\Omega )^{N}. \end{aligned}$$
(5.3)

Then for \(\mu =\mu _{\tau }\) where

$$\begin{aligned} \mu _{\tau }={\left\{ \begin{array}{ll} \tau \mu &{}\text { if }f=0,\\ \tau f-\text {div}(G)&{}\text { if }f=0 \end{array}\right. } \end{aligned}$$

with \(f\ge 0\in L^{1}(\Omega )\) and \(G\in L^{p'}(\Omega )^{N}\). We have

$$\begin{aligned}&\int _{0}^{T}\langle (u_{\tau })_{t},\varphi \rangle dt+\int _{Q}a(x,\nabla u_{\tau })\cdot \nabla \varphi dx dt+\int _{Q}g(u_{\tau })|\nabla u_{\tau }|^{p}\varphi dx dt\nonumber \\&\quad =\tau \int _{Q}G\cdot \nabla \varphi dx dt \end{aligned}$$
(5.4)

for every \(\varphi \in L^{p}(0,T;W^{1,p}_{0}(\Omega ))\cap L^{\infty }(Q)\) such that \(\varphi _{t}\in L^{p'}(0,T;W^{-1,p'}(\Omega ))\) and \(\varphi (T,x)=0\). Hence, for \(\varphi =u_{\tau }\), (5.4) becomes

$$\begin{aligned}&\int _{0}^{T}\langle (u_{\tau })_{t},u_{\tau }\rangle dt+\int _{Q}a(x,\nabla u_{\tau })\cdot \nabla u_{\tau }dx dt+\int _{Q}g(u_{\tau })|\nabla u_{\tau }|^{p}u_{\tau }dx dt\nonumber \\&\quad =\tau \int _{Q}G\cdot \nabla u_{\tau }dx dt. \end{aligned}$$
(5.5)

Moreover, by (2.6) we have

$$\begin{aligned} \begin{aligned}&\int _{0}^{T}\langle (u_{\tau })_{t},u_{\tau }\rangle dt+\alpha \int _{Q}|\nabla u_{\tau }|^{p}dx dt+\int _{Q}g(u_{\tau })|\nabla u_{\tau }|^{p}u_{\tau }dx dt\\&\quad \le \tau \int _{Q}G\cdot \nabla u_{\tau }dx dt\le \tau \Vert G\Vert _{L^{p'}(\Omega )^{N}}\Vert \nabla u_{\tau }\Vert _{L^{p}(Q)^{N}} \end{aligned} \end{aligned}$$
(5.6)

and then, using the integration by parts and assumptions (2.14) (recall that \(u_{0}^{\tau }(0)=0\)) we get

$$\begin{aligned} \int _{\Omega }\frac{[u_{\tau }(T)]^{2}}{2}dx+\alpha \int _{Q}|\nabla u_{\tau }|^{p}dx dt\le \tau \Vert G\Vert _{L^{p'}(\Omega )^{N}}\Vert \nabla u_{\tau }\Vert _{L^{p}(Q)^{N}}. \end{aligned}$$
(5.7)

Now, since \(u_{\tau }\ne 0\) and the fact that the first term is nonnegative, we can divide the above expression by \(\tau \Vert \nabla u\Vert _{L^{p}(Q)^{N}}\), getting

$$\begin{aligned} \frac{1}{\tau }\left( \int _{Q}|\nabla u_{\tau }|^{p}dxdt\right) ^{\frac{p-1}{p}}=\left( \int _{Q}\left| \nabla \left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) \right| ^{p}dx dt\right) ^{\frac{p-1}{p}}\le \Vert G\Vert _{L^{p'}(\Omega )^{N}}.\nonumber \\ \end{aligned}$$
(5.8)

Therefore, we have that \(\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\) is bounded in \(L^{p}(0,T;W^{1,p}_{0}(\Omega ))\), and so there exist a function \(u\in L^{p}(0,T;W^{1,p}_{0}(\Omega ))\) and a subsequence, such that, up to subsequences, \(\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\) weakly converges in \(L^{p}(0,T;W^{1,p}_{0}(\Omega ))\) (and then a.e.) to u as \(\tau \) tends to infinity. So, it is enough to prove that \(u>0\) almost everywhere on Q to conclude the proof. To this aim, for every \(\tau >0\), let us define

$$\begin{aligned} a_{\tau }(x,\zeta )=\frac{1}{\tau }a\left( x,\tau ^{\frac{1}{p-1}}\zeta \right) \text { (for the }p\text {--Laplacian, we have }a_{\tau }\equiv a) \end{aligned}$$
(5.9)

and then we can easily check that such an operator satisfies assumptions (2.6)–(2.8) (with the same constants \(\alpha \) and \(\beta \)). Now, \(\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\) satisfies the parabolic problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \tau ^{\frac{1}{p-1}}\left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) _{t}-\text {div}\left( a_{\tau }\left( x,\nabla (\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}})\right) \right) \\ +g\left( \tau ^{\frac{1}{p-1}}\left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) \right) \left| \tau ^{\frac{1}{p-1}}\nabla \left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) \right| ^{p}=\mu &{}\text { in }(0,T)\times \Omega ,\\ \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}(0,x)=0&{}\text { in }\Omega ,\\ \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}(t,x)=0&{}\text { on }(0,T)\times \partial \Omega \end{array}\right. } \end{aligned}$$
(5.10)

in a variational sense. Indeed, for every \(\varphi \in L^{p}(0,T;W^{1,p}_{0}(\Omega ))\cap L^{\infty }(Q)\) such that \(\varphi _{t}\in L^{p'}(0,T;W^{-1,p'}(\Omega ))\) and \(\varphi (T,x)=0\), we have

$$\begin{aligned}&\int _{0}^{T}\left\langle (u_{\tau })_{t},\varphi \right\rangle dt+\int _{Q}a_{\tau }\left( x,\nabla \left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) \right) \cdot \nabla \varphi dx dt+\int _{Q}g(u_{\tau })|\nabla u_{\tau }|^{p}\varphi dx dt\nonumber \\&\quad =\int _{Q}G\cdot \nabla \varphi dx dt. \end{aligned}$$
(5.11)

Moreover, thanks to [6, Theorem 3.1], we have that the family of operators \((a_{\tau })\)G-converges in the class of Leray–Lions operators, that is, there exists a Carathéodory function \({\overline{a}}\) satisfying assumptions (2.6)–(2.8), and a sequence of indices \(\tau _{k}=\tau (k)\) (called \(\tau \) again) such that

$$\begin{aligned} a_{\tau }(x,\nabla u_{\tau })\underset{\text { G-converges }}{\longrightarrow }{\overline{a}}(x,\nabla u_{\tau }). \end{aligned}$$
(5.12)

So, because of that, being u the weak limit of \(\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\) in \(L^{p}(0,T;W^{1,p}_{0}(\Omega ))\), we get that

$$\begin{aligned} a\left( x,\nabla \left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) \right) \underset{\tau _{k}\rightarrow \infty }{\rightharpoonup }{\overline{a}}(x,\nabla u)\text { weakly in }L^{p'}(Q)^{N}. \end{aligned}$$
(5.13)

Therefore, using this result in (5.10), we have

$$\begin{aligned} \int _{0}^{T}\langle u_{t},\varphi \rangle dt+\int _{Q}{\overline{a}}(x,\nabla u)\cdot \nabla \varphi dx dt+\int _{Q}g(u)|\nabla u|^{p}\varphi dx dt=\int _{Q}G\cdot \nabla \varphi dx dt\nonumber \\ \end{aligned}$$
(5.14)

for every \(\varphi \in L^{p}(0,T;W^{1,p}_{0}(\Omega ))\cap L^{\infty }(Q)\) such that \(\varphi _{t}\in L^{p'}(0,T;W^{-1,p'}(\Omega ))\) and \(\varphi (T,x)=0\); and so, u is a variational solution of problem

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t}-\text {div}({\overline{a}}(x,\nabla u))+g(u)|\nabla u|^{p}=\mu &{}\text { in }(0,T)\times \Omega ,\\ u(0,x)=0&{}\text { in }\Omega ,\\ u(t,x)=0&{}\text { on }(0,T)\times \partial \Omega . \end{array}\right. } \end{aligned}$$
(5.15)

Then, recalling that \(\mu \ne 0\) and using a suitable Harnack type result adapted to parabolic inequalities [99], we deduce that \(u(t,x)>0\) a.e. on Q. Now, if \(\mu \in {\mathcal {M}}_{0}(\Omega )\), we have

$$\begin{aligned} \mu _{\tau }={\left\{ \begin{array}{ll} \tau \mu &{}\text { if }f=0,\\ \tau f-\text {div}(G)&{}\text { if }f\ne 0 \end{array}\right. } \end{aligned}$$

where \(f\in L^{1}(\Omega )\) a nonnegative function and \(G\in L^{p'}(\Omega )^{N}\) (see [26]), we can suppose, without loss of generality, that \(u_{\tau }=\tau \chi _{E}-\text {div}(G)\) for a suitable set \(E\subseteq \Omega \) of positive measure; indeed, f, being nonidentically zero, it turns out to be strictly bounded away from zero on a suitable \(E\subseteq \Omega \), and so there exists a constant C such that \(f\ge C\chi _{E}\), and then, once we proved our result for such a \(\mu _{\tau }\), we can easily prove the statement by applying again a comparison argument. Now, reasoning analogously as above we deduce that \(\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\) solves the parabolic problem

$$\begin{aligned} {\left\{ \begin{array}{ll} \tau ^{\frac{1}{p-1}}\left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) _{t}-\text {div}\left( a_{\tau }\left( x,\nabla (\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}})\right) \right) \\ +g\left( \tau ^{\frac{1}{p-1}}\left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) \right) \left| \tau ^{\frac{1}{p-1}}\nabla \left( \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\right) \right| ^{p}=\chi _{B}-\frac{1}{\tau }\text {div}(G)\text { in }Q,\\ \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}(0,x)=0\text { in }\Omega ,\\ \frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}(t,x)=0\text { on }(0,T)\times \partial \Omega \end{array}\right. } \end{aligned}$$
(5.16)

Moreover

$$\begin{aligned} \chi _{B}-\frac{1}{\tau }\text {div}(G)\longrightarrow \chi _{B} \text { stronly in }W^{-1,p'}(\Omega )\text { as }\tau \rightarrow \infty . \end{aligned}$$
(5.17)

Therefore, since the G-convergence is stable under such type of convergence of data, we have, that the weak limit u of \(\frac{u_{\tau }}{\tau ^{\frac{1}{p-1}}}\) in \(L^{p}(0,T;W^{1,p}_{0}(\Omega ))\) solves

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t}-{\text {div}}({\overline{a}}(x,\nabla u))+g(u)|\nabla u|^{p}=\chi _{B}&{}\text { in }Q=(0,T)\times \Omega ,\\ u(0,x)=0&{}\text { in }\Omega ,\\ u(t,x)=0&{}\text { on }(0,T)\times \partial \Omega , \end{array}\right. } \end{aligned}$$
(5.18)

and so we deduce, as above, that \(u(t,x)>0\) a.e. on \(Q=(0,T)\times \Omega \), which implies that \(u_{\tau }\) goes to infinity as \(\tau \) and T tends to infinity and then we conclude the result of Theorem 5.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellaoui, M. Asymptotic behavior of solutions for nonlinear parabolic operators with natural growth term and measure data. J. Pseudo-Differ. Oper. Appl. 11, 1289–1329 (2020). https://doi.org/10.1007/s11868-019-00324-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-019-00324-z

Keywords

Mathematics Subject Classification

Navigation