Skip to main content
Log in

Uncertainty principles for the multivariate continuous shearlet transform

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present some new elements of harmonic analysis related to multivariate continuous shearlet transform introduced earlier in Dahlke et al. (J Fourier Anal Appl 16:340–364, 2010; The continuous shearlet transform in arbitrary space dimensions, Philipps-Universität Marburg, Marburg, 2008). Thus, some results (Parseval’s formula, inversion formula, etc.) are established. Next, we prove an analogue of Heisenberg’s inequality for shearlet transform. Last, we study shearlet transform on subset of finite measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrein, W.O., Berthier, A.M.: On support properties of \(L^p\)-functions and their Fourier transforms. J. Funct. Anal. 24, 258–267 (1977)

    Article  Google Scholar 

  2. Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106, 180–183 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19, 23–55 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bowie, P.C.: Uncertainty inequalities for Hankel transforms. SIAM J. Math. Anal. 2, 601–606 (1971)

    Article  MathSciNet  Google Scholar 

  5. Ciatti, P., Ricci, F., Sundari, M.: Heisenberg–Pauli–Weyl uncertainty inequalities and polynomial volume growth. Adv. Math. 215(2), 616–625 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cowling, M.G., Price, J.F.: Bandwidth versus time concentration: the Heisenberg–Pauli–Weyl inequality. SIAM J. Math. Anal. 15, 151–165 (1984)

    Article  MathSciNet  Google Scholar 

  7. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.-G., Teschke, G.: The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6, 157–181 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dahlke, S., Steidl, G., Teschke, G.: The continuous shearlet transform in arbitrary space dimensions. J. Fourier Anal. Appl. 16, 340–364 (2010)

    Article  MathSciNet  Google Scholar 

  9. Dahlke, S., Steidl, G., Teschke, G.: The Continuous Shearlet Transform in Arbitrary Space Dimensions. Preprint Nr. 2008-7. Philipps-Universit\(\ddot{a}\)t Marburg, Marburg (2008)

  10. Daubechies, I.: Time–frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34, 605–612 (1988)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.L., Strak, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  12. Dahlke, S., Kutyniok, G., Steidl, G., Teschke, G.: Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmon. Anal. 27, 195–214 (2009)

    Article  MathSciNet  Google Scholar 

  13. Faris, W.G.: Inequalities and uncertainty inequalities. J. Math. Phys. 19, 461–466 (1978)

    Article  Google Scholar 

  14. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MathSciNet  Google Scholar 

  15. Hardy, G.A.: Theorem concerning Fourier transforms. J. Lond. Math. Soc. 1, 227–231 (1933)

    Article  MathSciNet  Google Scholar 

  16. Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Springer, Berlin (1994)

    Book  Google Scholar 

  17. Heisenberg, W.: Uber den anschaulichen Inhalt der quantentheo-retischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  Google Scholar 

  18. Hogan, J.A.: Time–Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling. Springer, Basel (2007)

    Google Scholar 

  19. Ghobber, S., Jaming, P.: Uncertainty principles for integral operators. Stud. Math. 220(3), 197–220 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ghobber, S., Omri, S.: Time–frequency concentration of the windowed Hankel transform. Integral Transf. Spec. Funct. 25, 481–496 (2014)

    Article  MathSciNet  Google Scholar 

  21. Guo, K., Kutyniok, G., Labate, D.: Sparse multidimensional representations using anisotropic dilation and shear operators. In: Wavelets and Splines, pp. 189–201. Nashboro Press, Nashville, TN (2005)

  22. Guo, K., Labate, D.: Characterization and analysis of edges using the continuous shearlet transform. SIAM J. Imaging Sci. 2, 959–986 (2009)

    Article  MathSciNet  Google Scholar 

  23. Guo, K., Labate, D.: Characterization of piecewise-smooth surfaces using the 3D continuous shearlet transform. J. Fourier Anal. Appl. 18, 488–516 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326–352 (1927)

    Article  Google Scholar 

  25. Koornwinder, T.H.: Wavelets: an elementary treatment of theory and applications. In: Series in Approximations and Decompositions, vol. 3. World Scientific, Singapore (1993)

  26. Kutyniok, G., Labate, D.: Analysis and identification of multidimensional singularities using the continuous shearlets transform. In: Kutyniok, G., Labate, D. (eds.) Shearlet, pp. 69–103. Birkhäuser, Boston (2012)

    Chapter  Google Scholar 

  27. Kutyniok, G., Labate, D.: Introduction to shearlets. In: Kutyniok, G., Labate, D. (eds.) Shearlet, pp. 1–38. Birkhäuser, Boston (2012)

    Chapter  Google Scholar 

  28. Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math. Soc. 361, 2719–2754 (2009)

    Article  MathSciNet  Google Scholar 

  29. Laugesen, R.S.S., Weaver, N., Weiss, G.L., Wilson, E.N.: A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12(1), 89–102 (2002)

    Article  MathSciNet  Google Scholar 

  30. Li, Y., Chen, R., Liang, S.: A new image denoising method based on shearlet shrinkage and improved total variation. Intell. Sci. Intell. Data Eng. 7202, 382–388 (2012)

    Article  Google Scholar 

  31. Liu, S., Hu, S., Xiao, Y., An, L.: A Bayesian shearlet shrinkage for SAR image denoising via sparse representation. Multidimens. Syst. Signal Process. 25, 683–701 (2014)

    Article  Google Scholar 

  32. Price, J.F.: Inequalities and local uncertainty principles. J. Math. Phys. 24, 1711–1714 (1983)

    Article  MathSciNet  Google Scholar 

  33. Price, J.F.: Sharp local uncertainty inequalities. Stud. Math. 85, 37–45 (1987)

    Article  MathSciNet  Google Scholar 

  34. Price, J.F., Sitaram, A.: Local uncertainty inequalities for locally compact groups. Trans. Am. Math. Soc. 308, 105–114 (1988)

    Article  MathSciNet  Google Scholar 

  35. Rösler, M., Voit, M.: Uncertainty principle for Hankel transforms. Proc. Am. Math. Soc. 127, 183–194 (1999)

    Article  MathSciNet  Google Scholar 

  36. Rudin, W.: Analyse r\(\acute{e}\)elle et complexe. DUNOD, Paris (1998)

    Google Scholar 

  37. Singer, P.: Uncertainty inequalities for the continuous wavelet transform. IEEE Trans. Inf. Theory 45, 1039–1042 (1999)

    Article  MathSciNet  Google Scholar 

  38. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  Google Scholar 

  39. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  40. Weyl, H.: Gruppentheorie und Quantenmechanik, S. Hirzel, Leipzig. (Revised English edition: Groups and quantum mechanics). Dover (1950)

  41. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bochra Nefzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nefzi, B., Brahim, K. & Fitouhi, A. Uncertainty principles for the multivariate continuous shearlet transform. J. Pseudo-Differ. Oper. Appl. 11, 517–542 (2020). https://doi.org/10.1007/s11868-019-00292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-019-00292-4

Keywords

Mathematics Subject Classification

Navigation