Skip to main content
Log in

Hypoellipticity of Fediĭ’s type operators under Morimoto’s logarithmic condition

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

We prove hypoellipticity of second order linear operators on \(\mathbb {R}^{n+m}\) of the form \(L(x,y,D_x,D_y) = L_1(x,D_x) + g(x) L_2(y,D_y)\), where \(L_j\), \(j=1,2\), satisfy Morimoto’s super-logarithmic estimates \(||\log \!\left<\xi \right>^2 \hat{u}(\xi )||^2 \le \varepsilon (L_j u,u) + C_{\varepsilon ,K} ||u||^2\), and g is smooth, nonnegative, and vanishes only at the origin in \(\mathbb {R}^n\) to any arbitrary order. We also show examples in which our hypotheses are necessary for hypoellipticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beals, R., Fefferman, C.: On hypoellipticity of second order operators. Commun. Partial Differ. Equ. 1(1), 73–85 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christ, M.: Certain sums of squares of vector fields fail to be analytic hypoelliptic. Commun. Partial Differ. Equ. 16(10), 1695–1707 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Christ, M.: Hypoellipticity in the infinitely degenerate regime. In: Complex Analysis and Geometry (Columbus, OH, 1999), Volume 9 of Ohio State University Mathematics Research Institute Publication, pp. 59–84. de Gruyter, Berlin (2001)

  4. Fediĭ, V.S.: A certain criterion for hypoellipticity. Mat. Sb. (N.S.) 85(127), 18–48 (1971)

    MathSciNet  Google Scholar 

  5. Fefferman, C., Phong, D.H.: On positivity of pseudo-differential operators. Proc. Natl. Acad. Sci. USA 75(10), 4673–4674 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hörmander, L.: On the theory of general partial differential operators. Acta Math. 94, 161–248 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hörmander, L.: Hypoelliptic differential operators. Ann. Inst. Fourier Grenoble 11, 477–492 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hörmander, L.: The Analysis of Linear Partial Differential Operators: III. Pseudodifferential Operators. Volume 274 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer, Berlin (1985)

    MATH  Google Scholar 

  10. Kannai, Y.: An unsolvable hypoelliptic differential operator. Isr. J. Math. 9, 306–315 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohn, J.J.: Hypoellipticity and loss of derivatives. Ann. Math. (2) 162(2), 943–986 (2005). (With an appendix by Makhlouf Derridj and David S. Tartakoff)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kohn, J.J.: Hypoellipticity of some degenerate subelliptic operators. J. Funct. Anal. 159(1), 203–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korobenko, L., Rios, C.: Hypoellipticity of certain infinitely degenerate second order operators. J. Math. Anal. Appl. 409(1), 41–55 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kumano-go, H.: Pseudodifferential Operators. MIT Press, Cambridge (1981). (Translated from the Japanese by Rémi Vaillancourt and Michihiro Nagase)

    MATH  Google Scholar 

  15. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus: II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32(1), 1–76 (1985)

    MathSciNet  MATH  Google Scholar 

  16. Maz’ja, V.G., Kufner, A.: Variations on the theme of the inequality \((f^{\prime })^2\le 2f{\rm sup}|f^{\prime \prime }|\). Manuscr. Math. 56(1), 89–104 (1986)

    Article  MATH  Google Scholar 

  17. Morimoto, Y.: On the hypoellipticity for infinitely degenerate semi-elliptic operators. J. Math. Soc. Jpn. 30(2), 327–358 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Morimoto, Y.: Nonhypoellipticity for degenerate elliptic operators. Publ. Res. Inst. Math. Sci. 22(1), 25–30 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morimoto, Y.: A criterion for hypoellipticity of second order differential operators. Osaka J. Math. 24(3), 651–675 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Oleĭnik, O.A., Radkevič, E.V.: Second Order Equations with Nonnegative Characteristic Form. Plenum Press, New York (1973). (Translated from the Russian by Paul C. Fife)

    Book  Google Scholar 

  21. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schwartz, L.: Théorie des distributions. Tome I. Actualités Sci. Ind., no. 1091 = Publ. Inst. Math. Univ. Strasbourg 9. Hermann & Cie., Paris (1950)

  23. Schwartz, L.: Some applications of the theory of distributions. In: Lectures on Modern Mathematics, Vol. I, pp. 23–58. Wiley, New York (1963)

  24. Taylor, M.E.: Gelfand theory of pseudo differential operators and hypoelliptic operators. Trans. Am. Math. Soc. 153, 495–510 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taylor, M.E.: Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. Volume 81 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2000)

    Google Scholar 

Download references

Funding

Funding was provided by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN/04872-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Rios.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cristian Rios is supported by the Natural Sciences and Engineering Research Council of Canada.

Appendix

Appendix

1.1 Notation

The following multipliers will be frequently used, where as usual multipliers are defined via the Fourier transform \(\mathcal {F} \left( m(D)f\right) (\xi ) := m(\xi ) \hat{f}(\xi )\). In particular for any \(s\in {\mathbb {R}}\)

$$\begin{aligned} \!\left<\xi \right>^s :=(e^2+\xi ^2)^\frac{s}{2} \end{aligned}$$

Then \(\left<(\xi ,\eta )\right>^s=\!\left<D\right>^s \in S^s\).

For cut off functions we will use the following notation,

$$\begin{aligned} \phi \Subset \psi \in C^\infty _0(K) \end{aligned}$$
(83)

to mean that \(\psi \equiv 1\) on the support of \(\phi \), and \(\phi \equiv 1\) on a typically predefined compact set.

Norms without subscript will be \(L^2\) norms, i.e. \(||f|| = ||f||_{L^2}\) and subscripts would mean \(H^s\) norms, i.e. \(||f||_{s}:=||f||_{H^s} := \left( \int \!\left<\xi \right>^{2s} |\hat{f}(\xi )|^2 d\xi \right) ^{\frac{1}{2}}\).

1.2 Positivity of elliptic operator

First we establish positivity of a second order elliptic operator, which is used throughout the paper.

Lemma 43

Let L be degenerately elliptic, i.e. of the form (2). Then for any compact set \(K\Subset {\mathbb {R}}^n\) there is a constant \(C_K\), such that for all \(u\in C^\infty _0(K)\)

$$\begin{aligned} Re(Lu,u) \ge - C_K||u||^2 \end{aligned}$$
(84)

Proof

We consider terms one by one from the second order down to the second.

Let \(I_2\) denote all second order terms and integrate by parts:

$$\begin{aligned} I_2:=&-\sum _{j,k} \int a_{jk}(x)\partial _{x_j}\partial _{x_k} u\cdot u dx\\ =&\sum _{j,k} \int a_{jk}(x)\partial _{x_j} u \cdot \partial _{x_k} u dx+\sum _{j,k} \int \partial _{x_k} a_{jk}(x)\partial _{x_j} u \cdot u dx \end{aligned}$$

Observe that \(\partial _{x_k} u \cdot u =\frac{1}{2}\partial _{x_k} (u^2)\). With this knowledge in mind integrate the second term by parts

$$\begin{aligned} I_2 = \sum _{j,k} \int a_{jk}(x)\partial _{x_j} u \cdot \partial _{x_k} u dx - \frac{1}{2}\sum _{j,k}\int \partial _{x_j} \partial _{x_k} a_{jk}(x) u \cdot u dx \end{aligned}$$

The non-negative definite property of \(a_{jk}\ge 0\) implies the first term above is non-negative. While for the second term we apply the Hölder inequality:

$$\begin{aligned} I_2 \ge 0 -\frac{1}{2}\sum _{j,k}||\partial _{x_j}\partial _{x_k} a_{jk}(x)||_{L^\infty _x}\cdot ||u||^2 \end{aligned}$$

By Holder inequality

$$\begin{aligned} |(a_0 u,u)| \le C_K||u||^2 \end{aligned}$$
(85)

The first and zero-th terms are treated similarly to \(\int \partial _{x_k} a_{jk}(x)\partial _{x_j} u \cdot u dx\) and \(\int \partial _{x_k} a_{jk}(x)\partial _{x_j} u \cdot u dx\) respectively. \(\square \)

1.3 Properties of pseudodifferential operators

Proposition 44

(Adjoint \(\Psi \)DO) Let p be the symbol of the \(\Psi \)DO P. If \(P^{*}\), i.e. \((Pu,v)=(u,P^{*}v), \ \forall u,v\in \mathscr {S}\), then the symbol \(p^{*}\) has the following asymptotic expansion

$$\begin{aligned} p^{*}(x,\xi )\sim \sum _{\alpha }\frac{i^{|\alpha |}}{\alpha !}\overline{\partial _{\xi }^{\alpha }\partial _{x}^{\alpha }p(x,\xi )}. \end{aligned}$$

Proof

See e.g. [14] Theorem 2.1.7. \(\square \)

Proposition 45

(Composition of \(\Psi \)DO) Let p be the symbol of the \(\Psi \)DO P, and q—the symbol of the \(\Psi \)DO Q. Then the symbol r of the composition \(P\circ Q\) has the following asymptotic expansion

$$\begin{aligned} r(x,\xi )\sim \sum _{\alpha }\frac{(-i)^{|\alpha |}}{\alpha !}\partial _{\xi }^{\alpha }p(x,\xi )\partial _{x}^{\alpha }q(x,\xi ). \end{aligned}$$

Proof

See e.g. [14] Theorem 2.1.7. \(\square \)

Lemma 46

Let P be a pseudodifferential operator of order m such that \(P+P^{*}\) is of order \(m-l\). Then for any \(v\in H^{m}\) we have

$$\begin{aligned} Re(Pv,v)=\left( \frac{P+P^{*}}{2}v,v\right) \le C||v||^{2}_{\frac{m-l}{2}}. \end{aligned}$$
(86)

Proof

We can write

$$\begin{aligned} Re(Pv,v)= & {} \frac{1}{2}\left( (Pv,v)+\overline{(Pv,v)}\right) \\= & {} \frac{1}{2}\left( (Pv,v)+\overline{(v,P^{*}v)}\right) =\frac{1}{2}\left( (Pv,v)+(P^{*}v,v)\right) , \end{aligned}$$

which establishes the first equality in (86). The inequality in (86) then follows from the boundedness of \(\Psi \)DO, see [14]. \(\square \)

1.4 Regularization \(S_{\delta _1}\)

Lemma 47

Let \(S_{\delta _1}\) be defined by the symbol \(s_{\delta _1}=\!\left<\delta _1\cdot ( \xi ,\eta )\right>^{-(N+s+3)}\). We then have

  1. 1.

    \(S_{\delta _1}\) is an operator of order \(-N-s-3\) whose seminorms depend on \(\delta _1\);

  2. 2.

    \(S_{\delta _1}\) is an operator of order 0 uniformly in \(\delta _1\), i.e. \(\limsup _{\delta _1\rightarrow 0}|s_{\delta _1}|<\infty \);

  3. 3.

    The operator with the symbol \(\frac{\partial _{\xi ,\eta }^{\alpha }s_{\delta _1}}{s_{\delta _1}}\) for \(|\alpha |=1\) is uniformly of order \(-1\). Inductively, same argument can be repeated for \(|\alpha |>1\).

Proof

  1. 1.

    This follows immediately from the definition.

  2. 2.

    It is easy to check that \(|s_{\delta _1}|\le 1\ \forall \xi ,\eta \).

  3. 3.

    Differentiating we get

    $$\begin{aligned} \frac{\partial _{\xi _{k}}s_{\delta _1}}{s_{\delta _1}}=\frac{\partial _{\xi _{k}}(1+\delta _1^{2}|\xi |^{2}+\delta _1^{2}|\eta |^{2})^{\frac{-(N+s+3)}{2}}}{(1+\delta _1^{2}|\xi |^{2}+\delta _1^{2}|\eta |^{2})^{\frac{-(N+s+3)}{2}}} =-(N+s+3)\frac{\delta _1^{2}\xi _k}{(1+\delta _1^{2}|\xi |^{2}+\delta _1^{2}|\eta |^{2})} \end{aligned}$$

    which is easily seen to be an operator of order \(-1\) uniformly in \(\delta _1\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhunov, T., Korobenko, L. & Rios, C. Hypoellipticity of Fediĭ’s type operators under Morimoto’s logarithmic condition. J. Pseudo-Differ. Oper. Appl. 10, 649–688 (2019). https://doi.org/10.1007/s11868-018-0272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-018-0272-x

Keywords

Mathematics Subject Classification

Navigation