Skip to main content

Advertisement

Log in

Radiation Necrosis from Stereotactic Radiosurgery—How Do We Mitigate?

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Intracranial stereotactic radiosurgery (SRS) is an effective and convenient treatment for many brain conditions. Data regarding safety come mostly from retrospective single institutional studies and a small number of prospective studies. Variations in target delineation, treatment delivery, imaging follow-up protocols and dose prescription limit the interpretation of this data. There has been much clinical focus on radiation necrosis (RN) in particular, as it is being increasingly recognized on follow-up imaging. Symptomatic RN may be treated with medical therapy (such as corticosteroids and bevacizumab) with surgical resection being reserved for refractory patients. Nevertheless, RN remains a challenging condition to manage, and therefore upfront patient selection for SRS remains critical to provide complication-free control. Mitigation strategies need to be considered in situations where the baseline risk of RN is expected to be high—such as large target volume or re-irradiation. These may involve reduction in the prescribed dose or hypofractionated stereotactic radiation therapy (HSRT). Recently published guidelines and international meta-analysis report the benefit of HSRT in larger lesions, without compromising control rates. However, careful attention to planning parameters and SRS techniques still need to be adhered, even with HSRT. In cases where the risk is deemed to be high despite mitigation, a combination approach of surgery with or without post-operative radiation should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Barbour AB, Jacobs CD, Williamson H, Floyd SR, Suneja G, Torok JA, et al. Radiation therapy practice patterns for brain metastases in the United States in the stereotactic radiosurgery era. Adv Radiat Oncol. 2020;5(1):43–52. https://doi.org/10.1016/j.adro.2019.07.012.

    Article  PubMed  Google Scholar 

  2. Kohutek ZA, Yamada Y, Chan TA, Brennan CW, Tabar V, Gutin PH, et al. Long-term risk of radionecrosis and imaging changes after stereotactic radiosurgery for brain metastases. J Neuro-Oncol. 2015;125(1):149–56. https://doi.org/10.1007/s11060-015-1881-3.

    Article  Google Scholar 

  3. Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;6:48. https://doi.org/10.1186/1748-717X-6-48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sneed PK, Mendez J. Vemer-van den Hoek JG, Seymour ZA, Ma L, Molinaro AM et al. Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg. 2015;123(2):373–86. https://doi.org/10.3171/2014.10.JNS141610.

    Article  PubMed  Google Scholar 

  5. • Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001. https://doi.org/10.1016/j.ijrobp.2009.06.006 One of the early studies to suggest irradiated volume to predict for RN.

  6. Schuttrumpf LH, Niyazi M, Nachbichler SB, Manapov F, Jansen N, Siefert A, et al. Prognostic factors for survival and radiation necrosis after stereotactic radiosurgery alone or in combination with whole brain radiation therapy for 1-3 cerebral metastases. Radiat Oncol. 2014;9:105. https://doi.org/10.1186/1748-717X-9-105.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim JM, Miller JA, Kotecha R, Xiao R, Juloori A, Ward MC, et al. The risk of radiation necrosis following stereotactic radiosurgery with concurrent systemic therapies. J Neuro-Oncol. 2017;133(2):357–68. https://doi.org/10.1007/s11060-017-2442-8 Large retrospective study from Clevland Clinic looking at the association between RN and the use of various systemic therapeuatic agents.

  8. Calvo W, Hopewell JW, Reinhold HS, Yeung TK. Time- and dose-related changes in the white matter of the rat brain after single doses of X rays. Br J Radiol. 1988;61(731):1043–52. https://doi.org/10.1259/0007-1285-61-731-1043.

    Article  CAS  PubMed  Google Scholar 

  9. Benczik J, Tenhunen M, Snellman M, Joensuu H, Farkkila M, Joensuu R, et al. Late radiation effects in the dog brain: correlation of MRI and histological changes. Radiother Oncol. 2002;63(1):107–20. https://doi.org/10.1016/s0167-8140(02)00028-2.

    Article  PubMed  Google Scholar 

  10. Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89–91. https://doi.org/10.1016/j.ccr.2005.07.014.

    Article  CAS  PubMed  Google Scholar 

  11. Kamiryo T, Lopes MB, Kassell NF, Steiner L, Lee KS. Radiosurgery-induced microvascular alterations precede necrosis of the brain neuropil. Neurosurgery. 2001;49(2):409–14; discussion 14-5. https://doi.org/10.1097/00006123-200108000-00026.

    Article  CAS  PubMed  Google Scholar 

  12. Daigle JL, Hong JH, Chiang CS, McBride WH. The role of tumor necrosis factor signaling pathways in the response of murine brain to irradiation. Cancer Res. 2001;61(24):8859–65.

    CAS  PubMed  Google Scholar 

  13. Nordal RA, Nagy A, Pintilie M, Wong CS. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res. 2004;10(10):3342–53. https://doi.org/10.1158/1078-0432.CCR-03-0426.

    Article  CAS  PubMed  Google Scholar 

  14. Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys. 2005;62(1):279–87. https://doi.org/10.1016/j.ijrobp.2005.01.039.

    Article  CAS  PubMed  Google Scholar 

  15. Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S, et al. The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neuro-Oncol. 2011;105(2):423–31. https://doi.org/10.1007/s11060-011-0610-9.

    Article  CAS  Google Scholar 

  16. Burger PC, Mahley MS Jr, Dudka L, Vogel FS. The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer. 1979;44(4):1256–72. https://doi.org/10.1002/1097-0142(197910)44:4<1256::aid-cncr2820440415>3.0.co;2-t.

    Article  CAS  PubMed  Google Scholar 

  17. Panagiotakos G, Alshamy G, Chan B, Abrams R, Greenberg E, Saxena A, et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One. 2007;2(7):e588. https://doi.org/10.1371/journal.pone.0000588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity--molecular and cellular mechanisms. Br J Cancer. 2001;85(9):1233–9. https://doi.org/10.1054/bjoc.2001.2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hwang SY, Jung JS, Kim TH, Lim SJ, Oh ES, Kim JY, et al. Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis. 2006;21(3):457–67. https://doi.org/10.1016/j.nbd.2005.08.006.

    Article  CAS  PubMed  Google Scholar 

  20. Truong MT, St Clair EG, Donahue BR, Rush SC, Miller DC, Formenti SC, et al. Results of surgical resection for progression of brain metastases previously treated by gamma knife radiosurgery. Neurosurgery. 2006;59(1):86–97; discussion 86-97. https://doi.org/10.1227/01.NEU.0000219858.80351.38.

    Article  PubMed  Google Scholar 

  21. Jagannathan J, Bourne TD, Schlesinger D, Yen CP, Shaffrey ME, Laws ER Jr, et al. Clinical and pathological characteristics of brain metastasis resected after failed radiosurgery. Neurosurgery. 2010;66(1):208–17. https://doi.org/10.1227/01.NEU.0000359318.90478.69.

    Article  PubMed  Google Scholar 

  22. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72. https://doi.org/10.3174/ajnr.A1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forsyth PA, Kelly PJ, Cascino TL, Scheithauer BW, Shaw EG, Dinapoli RP, et al. Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J Neurosurg. 1995;82(3):436–44. https://doi.org/10.3171/jns.1995.82.3.0436.

    Article  CAS  PubMed  Google Scholar 

  24. Dequesada IM, Quisling RG, Yachnis A, Friedman WA. Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery. 2008;63(5):898–903; discussion 4. https://doi.org/10.1227/01.NEU.0000333263.31870.31.

    Article  PubMed  Google Scholar 

  25. Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, et al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys. 2013;87(3):449–57. https://doi.org/10.1016/j.ijrobp.2013.05.015 Concise opinion paper on RN.

    Article  PubMed  Google Scholar 

  26. Stockham AL, Tievsky AL, Koyfman SA, Reddy CA, Suh JH, Vogelbaum MA, et al. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neuro-Oncol. 2012;109(1):149–58. https://doi.org/10.1007/s11060-012-0881-9.

    Article  Google Scholar 

  27. Zhang Z, Yang J, Ho A, Jiang W, Logan J, Wang X, et al. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur Radiol. 2018;28(6):2255–63. https://doi.org/10.1007/s00330-017-5154-8.

    Article  PubMed  Google Scholar 

  28. Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, et al. Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neuro-Oncology. 2015;17(3):457–65. https://doi.org/10.1093/neuonc/nou230.

    Article  CAS  PubMed  Google Scholar 

  29. Wagner S, Lanfermann H, Eichner G, Gufler H. Radiation injury versus malignancy after stereotactic radiosurgery for brain metastases: impact of time-dependent changes in lesion morphology on MRI. Neuro-Oncology. 2017;19(4):586–94. https://doi.org/10.1093/neuonc/now193.

    Article  CAS  PubMed  Google Scholar 

  30. Alexiou GA, Tsiouris S, Kyritsis AP, Voulgaris S, Argyropoulou MI, Fotopoulos AD. Glioma recurrence versus radiation necrosis: accuracy of current imaging modalities. J Neuro-Oncol. 2009;95(1):1–11. https://doi.org/10.1007/s11060-009-9897-1.

    Article  Google Scholar 

  31. Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8. https://doi.org/10.3174/ajnr.A1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muto M, Frauenfelder G, Senese R, Zeccolini F, Schena E, Giurazza F, et al. Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2. Radiol Med. 2018;123(7):545–52. https://doi.org/10.1007/s11547-018-0866-7.

    Article  PubMed  Google Scholar 

  33. Detsky JS, Keith J, Conklin J, Symons S, Myrehaug S, Sahgal A, et al. Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology. J Neuro-Oncol. 2017;134(2):433–41. https://doi.org/10.1007/s11060-017-2545-2.

    Article  Google Scholar 

  34. Zeng QS, Li CF, Zhang K, Liu H, Kang XS, Zhen JH. Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neuro-Oncol. 2007;84(1):63–9. https://doi.org/10.1007/s11060-007-9341-3.

    Article  CAS  Google Scholar 

  35. Shah R, Vattoth S, Jacob R, Manzil FF, O'Malley JP, Borghei P, et al. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012;32(5):1343–59. https://doi.org/10.1148/rg.325125002.

    Article  PubMed  Google Scholar 

  36. Chernov M, Hayashi M, Izawa M, Ochiai T, Usukura M, Abe K, et al. Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: importance of multi-voxel proton MRS. Minim Invasive Neurosurg. 2005;48(4):228–34. https://doi.org/10.1055/s-2005-870952.

    Article  CAS  PubMed  Google Scholar 

  37. Mehrabian H, Desmond KL, Soliman H, Sahgal A, Stanisz GJ. Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer. Clin Cancer Res. 2017;23(14):3667–75. https://doi.org/10.1158/1078-0432.CCR-16-2265.

    Article  CAS  PubMed  Google Scholar 

  38. Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg. 2003;98(5):1056–64. https://doi.org/10.3171/jns.2003.98.5.1056.

    Article  PubMed  Google Scholar 

  39. Tomura N, Kokubun M, Saginoya T, Mizuno Y, Kikuchi Y. Differentiation between treatment-induced necrosis and recurrent tumors in patients with metastatic brain tumors: comparison among (11)C-methionine-PET, FDG-PET, MR permeability imaging, and MRI-ADC-preliminary results. AJNR Am J Neuroradiol. 2017;38(8):1520–7. https://doi.org/10.3174/ajnr.A5252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Enslow MS, Zollinger LV, Morton KA, Butterfield RI, Kadrmas DJ, Christian PE, et al. Comparison of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET in differentiating radiation necrosis from recurrent glioma. Clin Nucl Med. 2012;37(9):854–61. https://doi.org/10.1097/RLU.0b013e318262c76a.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Heinzel A, Muller D, Yekta-Michael SS, Ceccon G, Langen KJ, Mottaghy FM, et al. O-(2-18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost-effectiveness analysis. Neuro-Oncology. 2017;19(9):1271–8. https://doi.org/10.1093/neuonc/now310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li H, Deng L, Bai HX, Sun J, Cao Y, Tao Y, et al. Diagnostic accuracy of amino acid and FDG-PET in differentiating brain metastasis recurrence from radionecrosis after radiotherapy: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2018;39(2):280–8. https://doi.org/10.3174/ajnr.A5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsunaga S, Shuto T, Takase H, Ohtake M, Tomura N, Tanaka T, et al. Semiquantitative analysis using thallium-201 SPECT for differential diagnosis between tumor recurrence and radiation necrosis after gamma knife surgery for malignant brain tumors. Int J Radiat Oncol Biol Phys. 2013;85(1):47–52. https://doi.org/10.1016/j.ijrobp.2012.03.008.

    Article  PubMed  Google Scholar 

  44. Milano MT, Grimm J, Niemierko A, Soltys SG, Moiseenko V, Redmond KJ et al. 2020. Single- and multifraction stereotactic radiosurgery dose/volume tolerances of the brain. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2020.08.013. Important publication from the HyTEC group summarising the available evidence of tolerances

  45. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291–8. https://doi.org/10.1016/s0360-3016(99)00507-6.

    Article  CAS  PubMed  Google Scholar 

  46. Shehata MK, Young B, Reid B, Patchell RA, St Clair W, Sims J, et al. Stereotatic radiosurgery of 468 brain metastases < or = 2 cm: implications for SRS dose and whole brain radiation therapy. Int J Radiat Oncol Biol Phys. 2004;59(1):87–93. https://doi.org/10.1016/j.ijrobp.2003.10.009.

    Article  PubMed  Google Scholar 

  47. Shaw E, Scott C, Souhami L, Dinapoli R, Bahary JP, Kline R, et al. Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol (90-05). Int J Radiat Oncol Biol Phys. 1996;34(3):647–54. https://doi.org/10.1016/0360-3016(95)02106-x.

    Article  CAS  PubMed  Google Scholar 

  48. Korytko T, Radivoyevitch T, Colussi V, Wessels BW, Pillai K, Maciunas RJ, et al. 12 Gy gamma knife radiosurgical volume is a predictor for radiation necrosis in non-AVM intracranial tumors. Int J Radiat Oncol Biol Phys. 2006, 64(2):419–24. https://doi.org/10.1016/j.ijrobp.2005.07.980 Pioneering manuscript suggesting the use of the V12 metric for gamma knife treated patients.

  49. Chin LS, Ma L, DiBiase S. Radiation necrosis following gamma knife surgery: a case-controlled comparison of treatment parameters and long-term clinical follow up. J Neurosurg. 2001;94(6):899–904. https://doi.org/10.3171/jns.2001.94.6.0899.

    Article  CAS  PubMed  Google Scholar 

  50. Faruqi S, Ruschin M, Soliman H, Myrehaug S, Zeng KL, Husain Z et al. Adverse radiation effect after hypofractionated stereotactic radiosurgery in 5 daily fractions for surgical cavities and intact brain metastases. International Journal of Radiation Oncology • Biology • Physics. doi:10.1016/j.ijrobp.2019.12.002. Recent publication from Sunnybrooke reporting the outcome of patients treated with 30Gy in 5 fractions (cavity and intact). This paper also suggests tolerances to adhere to during HSRT.

  51. Inoue HK, Seto K, Nozaki A, Torikai K, Suzuki Y, Saitoh J, et al. Three-fraction CyberKnife radiotherapy for brain metastases in critical areas: referring to the risk evaluating radiation necrosis and the surrounding brain volumes circumscribed with a single dose equivalence of 14 Gy (V14). J Radiat Res. 2013;54(4):727–35. https://doi.org/10.1093/jrr/rrt006.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Inoue HK, Sato H, Seto K, Torikai K, Suzuki Y, Saitoh J, et al. Five-fraction CyberKnife radiotherapy for large brain metastases in critical areas: impact on the surrounding brain volumes circumscribed with a single dose equivalent of 14 Gy (V14) to avoid radiation necrosis. J Radiat Res. 2014;55(2):334–42. https://doi.org/10.1093/jrr/rrt127.

    Article  CAS  PubMed  Google Scholar 

  53. Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006;81(1):18–24. https://doi.org/10.1016/j.radonc.2006.08.024.

    Article  PubMed  Google Scholar 

  54. Peng L, Parekh V, Huang P, Lin DD, Sheikh K, Baker B, et al. Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics. Int J Radiat Oncol Biol Phys. 2018;102(4):1236–43. https://doi.org/10.1016/j.ijrobp.2018.05.041.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tsao MN, Rades D, Wirth A, Lo SS, Danielson BL, Gaspar LE, et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): An American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 2012;2(3):210–25. https://doi.org/10.1016/j.prro.2011.12.004.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15(4):387–95. https://doi.org/10.1016/S1470-2045(14)70061-0.

    Article  PubMed  Google Scholar 

  57. Hughes RT, Masters AH, McTyre ER, Farris MK, Chung C, Page BR, et al. Initial SRS for patients with 5 to 15 brain metastases: results of a multi-institutional experience. Int J Radiat Oncol Biol Phys. 2019;104(5):1091–8. https://doi.org/10.1016/j.ijrobp.2019.03.052.

    Article  PubMed  Google Scholar 

  58. Hatiboglu MA, Akdur K. Evaluating critical brain radiation doses in the treatment of multiple brain lesions with gamma knife radiosurgery. Stereotact Funct Neurosurg. 2017;95(4):268–78. https://doi.org/10.1159/000478272.

    Article  PubMed  Google Scholar 

  59. Minniti G, Capone L, Nardiello B, El Gawhary R, Raza G, Scaringi C, et al. Neurological outcome and memory performance in patients with 10 or more brain metastases treated with frameless linear accelerator (LINAC)-based stereotactic radiosurgery. J Neuro-Oncol. 2020;148(1):47–55. https://doi.org/10.1007/s11060-020-03442-7.

    Article  Google Scholar 

  60. •• Siddiqui ZA, Squires BS, Johnson MD, Baschnagel AM, Chen PY, Krauss DJ, et al. Predictors of radiation necrosis in long-term survivors after gamma knife stereotactic radiosurgery for brain metastases. Neurooncol Pract. 2020;7(4):400–8. https://doi.org/10.1093/nop/npz067 Recent publication from Beaumont, Michigan suggesting that the risk of RN continues to be present for approximately 4 years post SRS, and the risks with re-SRS can be as high as 33%.

  61. Lehrer EJ, Peterson J, Brown PD, Sheehan JP, Quinones-Hinojosa A, Zaorsky NG, et al. Treatment of brain metastases with stereotactic radiosurgery and immune checkpoint inhibitors: an international meta-analysis of individual patient data. Radiother Oncol. 2019;130:104–12. https://doi.org/10.1016/j.radonc.2018.08.025.

    Article  PubMed  Google Scholar 

  62. Cohen-Inbar O, Shih HH, Xu Z, Schlesinger D, Sheehan JP. The effect of timing of stereotactic radiosurgery treatment of melanoma brain metastases treated with ipilimumab. J Neurosurg. 2017;127(5):1007–14. https://doi.org/10.3171/2016.9.JNS161585.

    Article  PubMed  Google Scholar 

  63. Skrepnik T, Sundararajan S, Cui H, Stea B. Improved time to disease progression in the brain in patients with melanoma brain metastases treated with concurrent delivery of radiosurgery and ipilimumab. Oncoimmunology. 2017;6(3):e1283461. https://doi.org/10.1080/2162402X.2017.1283461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yusuf MB, Amsbaugh MJ, Burton E, Chesney J, Woo S. Peri-SRS Administration of immune checkpoint therapy for melanoma metastatic to the brain: investigating efficacy and the effects of relative treatment timing on lesion response. World Neurosurg. 2017;100:632–40 e4. https://doi.org/10.1016/j.wneu.2017.01.101.

    Article  PubMed  Google Scholar 

  65. Fang P, Jiang W, Allen P, Glitza I, Guha N, Hwu P, et al. Radiation necrosis with stereotactic radiosurgery combined with CTLA-4 blockade and PD-1 inhibition for treatment of intracranial disease in metastatic melanoma. J Neuro-Oncol. 2017;133(3):595–602. https://doi.org/10.1007/s11060-017-2470-4.

    Article  CAS  Google Scholar 

  66. Colaco RJ, Martin P, Kluger HM, Yu JB, Chiang VL. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? J Neurosurg. 2016;125(1):17–23. https://doi.org/10.3171/2015.6.JNS142763.

    Article  CAS  PubMed  Google Scholar 

  67. Kaidar-Person O, Zagar TM, Deal A, Moschos SJ, Ewend MG, Sasaki-Adams D, et al. The incidence of radiation necrosis following stereotactic radiotherapy for melanoma brain metastases: the potential impact of immunotherapy. Anti-Cancer Drugs. 2017;28(6):669–75. https://doi.org/10.1097/CAD.0000000000000497.

    Article  CAS  PubMed  Google Scholar 

  68. Minniti G, Anzellini D, Reverberi C, Cappellini GCA, Marchetti L, Bianciardi F, et al. Stereotactic radiosurgery combined with nivolumab or Ipilimumab for patients with melanoma brain metastases: evaluation of brain control and toxicity. J Immunother Cancer. 2019;7(1):102. https://doi.org/10.1186/s40425-019-0588-y.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martin AM, Cagney DN, Catalano PJ, Alexander BM, Redig AJ, Schoenfeld JD, et al. Immunotherapy and symptomatic radiation necrosis in patients with brain metastases treated with stereotactic radiation. JAMA Oncol. 2018;4(8):1123–4. https://doi.org/10.1001/jamaoncol.2017.3993.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Anker CJ, Grossmann KF, Atkins MB, Suneja G, Tarhini AA, Kirkwood JM. Avoiding severe toxicity from combined BRAF inhibitor and radiation treatment: consensus guidelines from the Eastern Cooperative Oncology Group (ECOG). Int J Radiat Oncol Biol Phys. 2016;95(2):632–46. https://doi.org/10.1016/j.ijrobp.2016.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shen CJ, Kummerlowe MN, Redmond KJ, Rigamonti D, Lim MK, Kleinberg LR. Stereotactic radiosurgery: treatment of brain metastasis without interruption of systemic therapy. Int J Radiat Oncol Biol Phys. 2016;95(2):735–42. https://doi.org/10.1016/j.ijrobp.2016.01.054.

    Article  PubMed  Google Scholar 

  72. Flickinger JC, Kondziolka D, Lunsford LD, Kassam A, Phuong LK, Liscak R, et al. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys. 2000;46(5):1143–8. https://doi.org/10.1016/s0360-3016(99)00513-1.

    Article  CAS  PubMed  Google Scholar 

  73. Ohtakara K, Hayashi S, Nakayama N, Ohe N, Yano H, Iwama T, et al. Significance of target location relative to the depth from the brain surface and high-dose irradiated volume in the development of brain radionecrosis after micromultileaf collimator-based stereotactic radiosurgery for brain metastases. J Neuro-Oncol. 2012;108(1):201–9. https://doi.org/10.1007/s11060-012-0834-3.

    Article  Google Scholar 

  74. Jhaveri J, Chowdhary M, Zhang X, Press RH, Switchenko JM, Ferris MJ, et al. Does size matter? Investigating the optimal planning target volume margin for postoperative stereotactic radiosurgery to resected brain metastases. J Neurosurg. 2018;130(3):797–803. https://doi.org/10.3171/2017.9.JNS171735.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE 2nd, Allen KJ, et al. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys. 2015;91(1):100–8. https://doi.org/10.1016/j.ijrobp.2014.09.004.

    Article  PubMed  Google Scholar 

  76. Raaphorst GP, Malone S, Alsbeih G, Souhani L, Szumacher E, Girard A. Skin fibroblasts in vitro radiosensitivity can predict for late complications following AVM radiosurgery. Radiother Oncol. 2002;64(2):153–6. https://doi.org/10.1016/s0167-8140(02)00076-2.

    Article  PubMed  Google Scholar 

  77. Zhang Q, Zheng D, Lei Y, Morgan B, Driewer J, Zhang M, et al. A new variable for SRS plan quality evaluation based on normal tissue sparing: the effect of prescription isodose levels. Br J Radiol. 2014;87(1043):20140362. https://doi.org/10.1259/bjr.20140362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. •• Tanenbaum DG, Buchwald ZS, Jhaveri J, Schreibmann E, Switchenko JM, Prabhu RS, et al. Dosimetric factors related to radiation necrosis after 5-fraction radiosurgery for patients with resected brain metastases. Pract Radiat Oncol. 2020;10(1):36–43. https://doi.org/10.1016/j.prro.2019.09.014 Another recent publication reporting the outcome of HSRT and providing suggestions for dose tolerances.

  79. Liu H, Andrews DW, Evans JJ, Werner-Wasik M, Yu Y. Dicker AP et al. Plan quality and treatment efficiency for radiosurgery to multiple brain metastases: non-coplanar RapidArc vs gamma knife Front Oncol. 2016;6:26. https://doi.org/10.3389/fonc.2016.00026.

    Article  CAS  PubMed  Google Scholar 

  80. Ma L, Nichol A, Hossain S, Wang B, Petti P, Vellani R, et al. Variable dose interplay effects across radiosurgical apparatus in treating multiple brain metastases. Int J Comput Assist Radiol Surg. 2014;9(6):1079–86. https://doi.org/10.1007/s11548-014-1001-4.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Solberg TD, Balter JM, Benedict SH, Fraass BA, Kavanagh B, Miyamoto C, et al. Quality and safety considerations in stereotactic radiosurgery and stereotactic body radiation therapy: executive summary. Pract Radiat Oncol. 2012;2(1):2–9. https://doi.org/10.1016/j.prro.2011.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang YX, King AD, Zhou H, Leung SF, Abrigo J, Chan YL, et al. Evolution of radiation-induced brain injury: MR imaging-based study. Radiology. 2010;254(1):210–8. https://doi.org/10.1148/radiol.09090428.

    Article  PubMed  Google Scholar 

  83. Kotsarini C, Griffiths PD, Wilkinson ID, Hoggard N. A systematic review of the literature on the effects of dexamethasone on the brain from in vivo human-based studies: implications for physiological brain imaging of patients with intracranial tumors. Neurosurgery. 2010;67(6):1799–815; discussion 815. https://doi.org/10.1227/NEU.0b013e3181fa775b.

    Article  PubMed  Google Scholar 

  84. Tye K, Engelhard HH, Slavin KV, Nicholas MK, Chmura SJ, Kwok Y, et al. An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neuro-Oncol. 2014;117(2):321–7. https://doi.org/10.1007/s11060-014-1391-8.

    Article  CAS  Google Scholar 

  85. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95. https://doi.org/10.1016/j.ijrobp.2009.12.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Furuse M, Nonoguchi N, Kuroiwa T, Miyamoto S, Arakawa Y, Shinoda J, et al. A prospective, multicentre, single-arm clinical trial of bevacizumab for patients with surgically untreatable, symptomatic brain radiation necrosis(dagger). Neurooncol Pract. 2016;3(4):272–80. https://doi.org/10.1093/nop/npv064.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brandes AA, Bartolotti M, Tosoni A, Poggi R, Franceschi E. Practical management of bevacizumab-related toxicities in glioblastoma. Oncologist. 2015;20(2):166–75. https://doi.org/10.1634/theoncologist.2014-0330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020–7. https://doi.org/10.1212/wnl.44.11.2020.

    Article  CAS  PubMed  Google Scholar 

  89. Williamson R, Kondziolka D, Kanaan H, Lunsford LD, Flickinger JC. Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: a pilot study. Stereotact Funct Neurosurg. 2008;86(6):359–66. https://doi.org/10.1159/000163557.

    Article  PubMed  Google Scholar 

  90. Ohguri T, Imada H, Kohshi K, Kakeda S, Ohnari N, Morioka T, et al. Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys. 2007;67(1):248–55. https://doi.org/10.1016/j.ijrobp.2006.08.009.

    Article  PubMed  Google Scholar 

  91. Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H. Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. J Neurol Sci. 2003;209(1-2):115–7. https://doi.org/10.1016/s0022-510x(03)00007-8.

    Article  PubMed  Google Scholar 

  92. Leber KA, Eder HG, Kovac H, Anegg U, Pendl G. Treatment of cerebral radionecrosis by hyperbaric oxygen therapy. Stereotact Funct Neurosurg. 1998;70(Suppl 1):229–36. https://doi.org/10.1159/000056426.

    Article  PubMed  Google Scholar 

  93. McPherson CM, Warnick RE. Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neuro-Oncol. 2004;68(1):41–7. https://doi.org/10.1023/b:neon.0000024744.16031.e9.

    Article  Google Scholar 

  94. Nath SK, Sheridan AD, Rauch PJ, Yu JB, Minja FJ, Vortmeyer AO, et al. Significance of histology in determining management of lesions regrowing after radiosurgery. J Neuro-Oncol. 2014;117(2):303–10. https://doi.org/10.1007/s11060-014-1389-2.

    Article  Google Scholar 

  95. Sharma M, Balasubramanian S, Silva D, Barnett GH, Mohammadi AM. Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: An overview. Expert Rev Neurother. 2016;16(2):223–32. https://doi.org/10.1586/14737175.2016.1135736.

    Article  CAS  PubMed  Google Scholar 

  96. Hong CS, Deng D, Vera A, Chiang VL. Laser-interstitial thermal therapy compared to craniotomy for treatment of radiation necrosis or recurrent tumor in brain metastases failing radiosurgery. J Neuro-Oncol. 2019;142(2):309–17. https://doi.org/10.1007/s11060-019-03097-z.

    Article  CAS  Google Scholar 

  97. Chaunzwa TL, Deng D, Leuthardt EC, Tatter SB, Mohammadi AM, Barnett GH, et al. Laser thermal ablation for metastases failing radiosurgery: a multicentered retrospective study. Neurosurgery. 2018;82(1):56–63. https://doi.org/10.1093/neuros/nyx142.

    Article  PubMed  Google Scholar 

  98. •• Ahluwalia M, Barnett GH, Deng D, Tatter SB, Laxton AW, Mohammadi AM, et al. Laser ablation after stereotactic radiosurgery: a multicenter prospective study in patients with metastatic brain tumors and radiation necrosis. J Neurosurg. 2018;130(3):804–11. https://doi.org/10.3171/2017.11.JNS171273 Important prospective study investigating the use of LITT to treat both RN and brain tumors.

  99. Minniti G, Scaringi C, Paolini S, Lanzetta G, Romano A, Cicone F, et al. Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (>2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int J Radiat Oncol Biol Phys. 2016;95(4):1142–8. https://doi.org/10.1016/j.ijrobp.2016.03.013.

    Article  PubMed  Google Scholar 

  100. Dore M, Martin S, Delpon G, Clement K, Campion L, Thillays F. Stereotactic radiotherapy following surgery for brain metastasis: predictive factors for local control and radionecrosis. Cancer Radiother. 2017;21(1):4–9. https://doi.org/10.1016/j.canrad.2016.06.010.

    Article  CAS  PubMed  Google Scholar 

  101. •• Lehrer EJ, Peterson JL, Zaorsky NG, Brown PD, Sahgal A, Chiang VL, et al. Single versus multifraction stereotactic radiosurgery for large brain metastases: an international meta-analysis of 24 trials. Int J Radiat Oncol Biol Phys. 2019;103(3):618–30. https://doi.org/10.1016/j.ijrobp.2018.10.038 International MA suggesting that HSRT is safer, and just as effective, for larger lesions.

  102. UK Consortium: Stereotactic ablative body radiation therapy (SABR): a resource. https://www.sabr.org.uk/wp-content/uploads/2019/04/SABRconsortium-guidelines-2019-v6.1.0.pdf. Accessed 12 November 2020

  103. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7. https://doi.org/10.1016/j.ijrobp.2009.02.091.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chowdhary M, Okwan-Duodu D, Switchenko JM, Press RH, Jhaveri J, Buchwald ZS, et al. Angiotensin receptor blockade: a novel approach for symptomatic radiation necrosis after stereotactic radiosurgery. J Neuro-Oncol. 2018;136(2):289–98. https://doi.org/10.1007/s11060-017-2652-0.

    Article  CAS  Google Scholar 

  105. Montay-Gruel P, Markarian M, Allen BD, Baddour JD, Giedzinski E, Jorge PG, et al. Ultra-high-dose-rate FLASH irradiation limits reactive gliosis in the brain. Radiat Res. 2020. https://doi.org/10.1667/RADE-20-00067.1.

  106. Navarria P, Pessina F, Clerici E, Franceschini D, Gay LG, De Rose F, et al. Surgery followed by hypofractionated radiosurgery on the tumor bed in oligometastatic patients with large brain metastases. Results of a Phase 2 Study. Int J Radiat Oncol Biol Phys. 2019;105(5):1095–105. https://doi.org/10.1016/j.ijrobp.2019.08.054.

    Article  CAS  PubMed  Google Scholar 

  107. Prabhu RS, Patel KR, Press RH, Soltys SG, Brown PD, Mehta MP, et al. Preoperative vs postoperative radiosurgery for resected brain metastases: a review. Neurosurgery. 2019;84(1):19–29. https://doi.org/10.1093/neuros/nyy146.

    Article  PubMed  Google Scholar 

  108. Ruschin M, Sahgal A, Soliman H, Myrehaug S, Tsao M, Yeboah C, et al. Investigation of irradiated volume in linac-based brain hypo-fractionated stereotactic radiotherapy. Radiat Oncol. 2017;12(1):117. https://doi.org/10.1186/s13014-017-0853-5.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nedzi LA, Kooy. H, Alexander E, 3rd, Gelman RS, Loeffler JS. Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys. 1991;21(3):591–9. https://doi.org/10.1016/0360-3016(91)90675-t.

    Article  CAS  PubMed  Google Scholar 

  110. McDonald D, Schuler J, Takacs I, Peng J, Jenrette J, Vanek K. Comparison of radiation dose spillage from the gamma knife perfexion with that from volumetric modulated arc radiosurgery during treatment of multiple brain metastases in a single fraction. J Neurosurg. 2014;121(Suppl):51–9. https://doi.org/10.3171/2014.7.GKS141358.

    Article  PubMed  Google Scholar 

  111. Sahgal A, Barani IJ, Novotny J Jr, Zhang B, Petti P, Larson DA, et al. Prescription dose guideline based on physical criterion for multiple metastatic brain tumors treated with stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;78(2):605–8. https://doi.org/10.1016/j.ijrobp.2009.11.055.

    Article  PubMed  Google Scholar 

  112. Tallet AV, Dhermain F, Le Rhun E, Noel G, Kirova YM. Combined irradiation and targeted therapy or immune checkpoint blockade in brain metastases: toxicities and efficacy. Ann Oncol. 2017;28(12):2962–76. https://doi.org/10.1093/annonc/mdx408.

    Article  CAS  PubMed  Google Scholar 

  113. Schoonbeek A, Monshouwer R, Hanssens P, Raaijmakers E, Nowak P, Marijnissen JP, et al. Intracranial radiosurgery in the Netherlands. A planning comparison of available systems with regard to physical aspects and workload. Technol Cancer Res Treat. 2010;9(3):279–90. https://doi.org/10.1177/153303461000900307.

    Article  CAS  PubMed  Google Scholar 

  114. Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation therapy oncology group: radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27(5):1231–9. https://doi.org/10.1016/0360-3016(93)90548-a.

    Article  CAS  PubMed  Google Scholar 

  115. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105(Suppl):194–201. https://doi.org/10.3171/sup.2006.105.7.194.

    Article  PubMed  Google Scholar 

  116. Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93(Suppl 3):219–22. https://doi.org/10.3171/jns.2000.93.supplement.

    Article  PubMed  Google Scholar 

  117. Wagner TH, Bova FJ, Friedman WA, Buatti JM, Bouchet LG, Meeks SL. A simple and reliable index for scoring rival stereotactic radiosurgery plans. Int J Radiat Oncol Biol Phys. 2003;57(4):1141–9. https://doi.org/10.1016/s0360-3016(03)01563-3.

    Article  PubMed  Google Scholar 

  118. Reynolds TA, Jensen AR, Bellairs EE, Ozer M. Dose gradient index for stereotactic radiosurgery/radiation therapy. Int J Radiat Oncol Biol Phys. 2020;106(3):604–11. https://doi.org/10.1016/j.ijrobp.2019.11.408.

    Article  PubMed  Google Scholar 

  119. Seung SK, Larson DA, Galvin JM, Mehta MP, Potters L, Schultz CJ, et al. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) Practice Guideline for the Performance of Stereotactic Radiosurgery (SRS). Am J Clin Oncol. 2013;36(3):310–5. https://doi.org/10.1097/COC.0b013e31826e053d.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sahgal A, Kellett S, Ruschin M, Greenspoon J, Follwell M, Sinclair J, et al. A cancer care Ontario organizational guideline for the delivery of stereotactic radiosurgery for brain metastasis in Ontario. Canada Pract Radiat Oncol. 2020;10(4):243–54. https://doi.org/10.1016/j.prro.2019.11.002.

    Article  PubMed  Google Scholar 

  121. Hartgerink D, Swinnen A, Roberge D, Nichol A, Zygmanski P, Yin FF, et al. LINAC based stereotactic radiosurgery for multiple brain metastases: guidance for clinical implementation. Acta Oncol. 2019;58(9):1275–82. https://doi.org/10.1080/0284186X.2019.1633016.

    Article  PubMed  Google Scholar 

  122. Growcott S, Dembrey T, Patel R, Eaton D, Cameron A. Inter-observer variability in target volume delineations of benign and metastatic brain tumours for stereotactic radiosurgery: results of a National Quality Assurance Programme. Clin Oncol (R Coll Radiol). 2020;32(1):13–25. https://doi.org/10.1016/j.clon.2019.06.015.

    Article  CAS  Google Scholar 

  123. Vellayappan BA, Doody J, Vandervoort E, Szanto J, Sinclair J, Caudrelier JM, et al. Pre-operative versus post-operative radiosurgery for brain metastasis: effects on treatment volume and inter-observer variability. J Radiosurg SBRT. 2018;5(2):89–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Rick JW, Shahin M, Chandra A, Dalle Ore C, Yue JK, Nguyen A, et al. Systemic therapy for brain metastases. Crit Rev Oncol Hematol. 2019;142:44–50. https://doi.org/10.1016/j.critrevonc.2019.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balamurugan A. Vellayappan.

Ethics declarations

Conflict of interest

Matthew Foote has received travel and honoraria from Elekta, consulting fee from Varian. Kristin Redmond has received research funding and travel expenses from Accuray, has received research funding from Elekta, has received honorarium from AstraZeneca and acts as a consultant for Medtronic. Simon Lo has received research support from Elekta AB for Gamma Knife ICON Expert Group. Balamurugan A. Vellayappan declares that there is no conflict of interest. Tresa McGranahan declares that there is no conflict of interest. Jerome Graber declares that there is no conflict of interest. Lynne Taylor declares that there is no conflict of interest. Vyshak Venur declares that there is no conflict of interest. Richard Ellenbogen declares that there is no conflict of interest. Andrew E. Sloan declares that there is no conflict of interest. Samuel T. Chao declares that there is no conflict of interest. John H. Suh declares that there is no conflict of interest. Eric L. Chang declares that there is no conflict of interest. Arjun Sahgal declares that there is no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vellayappan, B.A., McGranahan, T., Graber, J. et al. Radiation Necrosis from Stereotactic Radiosurgery—How Do We Mitigate?. Curr. Treat. Options in Oncol. 22, 57 (2021). https://doi.org/10.1007/s11864-021-00854-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00854-z

Keywords

Navigation