Skip to main content

Advertisement

Log in

New Treatment Strategies for the Inflammatory Breast Cancer

  • Breast Cancer (WJ Gradishar, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Inflammatory breast cancer (IBC) remains the most aggressive type of breast cancer. During the past decade, enormous progress has been made to refine diagnostic criteria and establish multimodality treatment strategies as keys for the improvement of survival outcomes. Multiple genomic studies enabled a better understanding of underlying tumor biology, which is responsible for the complex and aggressive nature of IBC. Despite these important achievements, outcomes for this subgroup of patients remain unsatisfactory compared to locally advanced non-IBC counterparts. Global efforts are now focused on identifying novel strategies that will improve treatment response, prolong survival for metastatic patients, achieve superior local control, and possibly increase the cure rate for locally advanced disease. Genomic technologies constitute the most important tool that will support future clinical progress. Gene-expressing profiling of the tumor tissue and liquid biopsy are important parts of the everyday clinical practice aiming to guide treatment decisions by providing information on tumor molecular drivers or primary and acquired resistance to treatment. The International IBC expert panel and IBC International Consortium made a tremendous effort to define IBC as a distinct entity of BC, and they will continue to lead and support the research for this rare and very aggressive disease. Finally, a uniform platform is now required to develop and lead large, multi-arm, proof-of-concept clinical trials that perform rapid, focused, and cost-effective evaluations of potential novel therapeutics in IBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fouad TM, et al. Overall survival differences between patients with inflammatory and noninflammatory breast cancer presenting with distant metastasis at diagnosis. Breast Cancer Res Treat. 2015;152(2):407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walshe JM, Swain SM. Clinical aspects of inflammatory breast cancer. Breast disease. 2005;22:35–44.

    Article  PubMed  Google Scholar 

  3. Hance KW, et al. Trends in inflammatory breast carcinoma incidence and survival: the Surveillance, Epidemiology, and End Results Program at the National Cancer Institute. JNCI: Journal of the National Cancer Institute. 2005;97(13):966–75.

    Article  PubMed  Google Scholar 

  4. Iglesias A, et al. Benign breast lesions that simulate malignancy: magnetic resonance imaging with radiologic-pathologic correlation. Curr Probl Diagn Radiol. 2007;36(2):66–82.

    Article  PubMed  Google Scholar 

  5. Anderson WF, Chu KC, Chang S. Inflammatory breast carcinoma and noninflammatory locally advanced breast carcinoma: distinct clinicopathologic entities? Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2003;21(12):2254–9.

    Article  Google Scholar 

  6. Cristofanilli M, et al. Inflammatory breast cancer (IBC) and patterns of recurrence. Cancer. 2007;110(7):1436–44.

    Article  PubMed  Google Scholar 

  7. Levine PH, Veneroso C. The epidemiology of inflammatory breast cancer. Semin Oncol. 2008;35(1):11–6.

    Article  PubMed  Google Scholar 

  8. Atkinson RL, et al. Abstract P6-12-04: Risk factors for inflammatory breast cancer. Cancer Res. 2013;73(24 Supplement):P6-12-04.

    Article  Google Scholar 

  9. Schairer C, et al. Risk factors for inflammatory breast cancer and other invasive breast cancers. J Natl Cancer Inst. 2013;105(18):1373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Key TJ, et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst. 2003;95(16):1218–26.

    Article  CAS  PubMed  Google Scholar 

  11. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4(7):505–18.

    Article  CAS  PubMed  Google Scholar 

  12. Fina F, et al. Frequency and genome load of Epstein-Barr virus in 509 breast cancers from different geographical areas. Br J Cancer. 2001;84(6):783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corbex M, et al. Prevalence of papillomaviruses, polyomaviruses, and herpesviruses in triple-negative and inflammatory breast tumors from algeria compared with other types of breast cancer tumors. PLoS One. 2014;9(12):e114559-e114559.

    Article  Google Scholar 

  14. Pogo BGT, Holland JF, Levine PH. Human mammary tumor virus in inflammatory breast cancer. Cancer. 2010;116(S11):2741–4.

    Article  PubMed  Google Scholar 

  15. Witt A, et al. The mouse mammary tumor virus-like env gene sequence is not detectable in breast cancer tissue of Austrian patients. Oncol Rep. 2003;10(4):1025–9.

    CAS  PubMed  Google Scholar 

  16. Mant C, et al. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies. Virology. 2004;318(1):393–404.

    Article  CAS  PubMed  Google Scholar 

  17. Günhan-Bilgen I, Üstün EE, Memiş A. Inflammatory breast carcinoma: mammographic, ultrasonographic, clinical, and pathologic findings in 142 cases. Radiology. 2002;223(3):829–38.

    Article  PubMed  Google Scholar 

  18. Chow CK. Imaging in inflammatory breast carcinoma. Breast disease. 2005;22:45–54.

    Article  PubMed  Google Scholar 

  19. Lee KW, et al. Inflammatory breast cancer: imaging findings. Clin Imaging. 2005;29(1):22–5.

    PubMed  Google Scholar 

  20. Yang WT, et al. Inflammatory breast cancer: PET/CT, MRI, mammography, and sonography findings. Breast Cancer Res Treat. 2008;109(3):417–26.

    Article  CAS  PubMed  Google Scholar 

  21. Girardi V, et al. Inflammatory breast carcinoma and locally advanced breast carcinoma: characterisation with MR imaging. La Radiologia medica. 2011;116(1):71–83.

    Article  CAS  PubMed  Google Scholar 

  22. Uematsu T. MRI findings of inflammatory breast cancer, locally advanced breast cancer, and acute mastitis: T2-weighted images can increase the specificity of inflammatory breast cancer. Breast cancer (Tokyo, Japan). 2012;19(4):289–94.

    Article  Google Scholar 

  23. Matro JM, et al. Inflammatory breast cancer management in the national comprehensive cancer network: the disease, recurrence pattern, and outcome. Clin Breast Cancer. 2015;15(1):1–7.

    Article  PubMed  Google Scholar 

  24. Groheux D, et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2013;54(1):5–11.

    Article  Google Scholar 

  25. Carkaci S, et al. Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. Journal of nuclear medicine : official publication. Society of Nuclear Medicine. 2009;50(2):231–8.

    Article  Google Scholar 

  26. Alberini J-L, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer. 2009;115(21):5038–47.

    Article  PubMed  Google Scholar 

  27. Resetkova E. Pathologic aspects of inflammatory breast carcinoma: part 1. Histomorphology and differential diagnosis. Semin Oncol. 2008;35(1):25–32.

    Article  PubMed  Google Scholar 

  28. Parton M, et al. High incidence of HER-2 positivity in inflammatory breast cancer. Breast (Edinburgh, Scotland). 2004;13(2):97–103.

    Article  CAS  Google Scholar 

  29. Bonnier P, et al. Inflammatory carcinomas of the breast: a clinical, pathological, or a clinical and pathological definition? Int J Cancer. 1995;62(4):382–5.

    Article  CAS  PubMed  Google Scholar 

  30. • Hirko KA, et al. Abstract P6-09-10: Association of dermal lymphatic involvement and survival in inflammatory breast cancer. Cancer Res. 2019;79(4 Supplement):P6-09-10. Represents new data on dinstic biology of IBC tightly related with disease prognosis.

    Article  Google Scholar 

  31. • Reddy JP, et al. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer. Breast Cancer Res Treat. 2018;171(2):283–93 Elucidates the unique morphology of IBC.

    Article  CAS  PubMed  Google Scholar 

  32. Perez C, Graham M, Taylor M. Management of locally advanced carcinoma of the breast. I Noninflammatory Cancer. 1994;74(1 Suppl):453–65.

    CAS  PubMed  Google Scholar 

  33. Cristofanilli M, Buzdar A, Sneige N. Paclitaxel in the multimodality treatment for inflammatory breast carcinoma. Cancer. 2001;92:1775–82.

    Article  CAS  PubMed  Google Scholar 

  34. • Liu J, et al. Chemotherapy response and survival of inflammatory breast cancer by hormone receptor- and HER2-defined molecular subtypes approximation: an analysis from the National Cancer Database. Journal of cancer research and clinical oncology. 2017;143(1):161–8. Large cohort study demonstrating the prognosis and treatment strategy based on tumor subtype.

    Article  CAS  PubMed  Google Scholar 

  35. • van Uden DJP, et al. Pathologic complete response and overall survival in breast cancer subtypes in stage III inflammatory breast cancer. Breast cancer research and treatment. 2019;176(1):217–26 Confirm the importance of pCR for IBC as for all BC in general.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gianni L, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014;15(6):640–7.

    Article  CAS  PubMed  Google Scholar 

  37. Schneeweiss A, et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Annals of oncology : official journal of the European Society for Medical Oncology. 2013;24(9):2278–84.

    Article  CAS  Google Scholar 

  38. Brzezinska M, Dixon JM. Inflammatory breast cancer: no longer an absolute contraindication for breast conservation surgery following good response to neoadjuvant therapy. Gland surgery. 2018;7(6):520–4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen H, et al. A standard mastectomy should not be the only recommended breast surgical treatment for non-metastatic inflammatory breast cancer: a large population-based study in the Surveillance, Epidemiology, and End Results database 18. Breast (Edinburgh, Scotland). 2017;35:48–54.

    Article  Google Scholar 

  40. Rueth NM, et al. Underuse of trimodality treatment affects survival for patients with inflammatory breast cancer: an analysis of treatment and survival trends from the National Cancer Database. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2014;32(19):2018–24.

    Article  Google Scholar 

  41. Woodward W, Buchholz T. The role of locoregional therapy in inflammatory breast cancer. Semin Oncol. 2008;35:78–86.

    Article  PubMed  Google Scholar 

  42. von Minckwitz G, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 2019;380(7):617–28.

    Article  Google Scholar 

  43. Martin M, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017:18.

  44. Masuda N, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017;376(22):2147–59.

    Article  CAS  PubMed  Google Scholar 

  45. Schmid P, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–21.

    Article  CAS  PubMed  Google Scholar 

  46. Wang XI, et al. Phase III trial of metronomic capecitabine maintenance after standard treatment in operable triple-negative breast cancer (SYSUCC-001). J Clin Oncol. 2020;38(15_suppl):507-507.

    Google Scholar 

  47. Van Laere SJ, et al. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19(17):4685–96.

    Article  Google Scholar 

  48. Giampieri S, et al. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang X, et al. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018;20(1):88.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ross JS, et al. Comprehensive genomic profiling of inflammatory breast cancer cases reveals a high frequency of clinically relevant genomic alterations. Breast Cancer Res Treat. 2015;154(1):155–62.

    Article  CAS  PubMed  Google Scholar 

  51. •• Bertucci F, et al. NOTCH and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in non-inflammatory breast cancers. Molecular Oncology. 2020;14(3):504–19. Large retrospective study that gives very important information on tumor biology and potential future treatment targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cabioglu N, et al. Expression of growth factor and chemokine receptors: new insights in the biology of inflammatory breast cancer. Annals of oncology : official journal of the European Society for Medical Oncology. 2007;18(6):1021–9.

    Article  CAS  Google Scholar 

  53. Wang X, et al. EGFR signaling promotes inflammation and cancer stem-like activity in inflammatory breast cancer. Oncotarget. 2017;8(40):67904–17.

    Article  PubMed  PubMed Central  Google Scholar 

  54. •• Matsuda N, et al. Safety and efficacy of panitumumab plus neoadjuvant chemotherapy in patients with primary HER2-negative inflammatory breast cancer. JAMA Oncol. 2018;4(9):1207–13. New treatment strategies for IBC.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hamm CA, et al. Genomic and immunological tumor profiling identifies targetable pathways and extensive CD8+/PDL1+ immune infiltration in inflammatory breast cancer tumors. Mol Cancer Ther. 2016;15(7):1746.

    Article  CAS  PubMed  Google Scholar 

  56. Conley SJ, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A. 2012;109(8):2784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yamauchi H, et al. Molecular targets for treatment of inflammatory breast cancer. Nat Rev Clin Oncol. 2009;6(7):387–94.

    Article  CAS  PubMed  Google Scholar 

  58. Robertson FM, et al. The class I HDAC inhibitor Romidepsin targets inflammatory breast cancer tumor emboli and synergizes with paclitaxel to inhibit metastasis. J Exp Ther Oncol. 2013;10(3):219–33.

    CAS  PubMed  Google Scholar 

  59. Mahmoud SM, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  60. Jagsi R, et al. Concurrent veliparib with chest wall and nodal radiotherapy in patients with inflammatory or locoregionally recurrent breast cancer: the TBCRC 024 Phase I Multicenter Study. J Clin Oncol. 2018;36(13):1317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kirova YM, et al. Abstract OT3-04-01: a phase I of olaparib with radiation therapy in patients with inflammatory, loco-regionally advanced or metastatic TNBC (triple negative breast cancer) or patient with operated TNBC with residual disease. Cancer Res. 2018;78(4 Supplement):OT3-04-01.

    Article  Google Scholar 

  62. Pirovano G, et al. Targeted brain tumor radiotherapy using an Auger emitter. bioRxiv. 2019:649764.

  63. Banerjee S, et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77(5):521–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296(5573):1653–5.

    Article  CAS  PubMed  Google Scholar 

  65. Jhaveri K, et al. Hyperactivated mTOR and JAK2/STAT3 pathways: molecular drivers and potential therapeutic targets of inflammatory and invasive ductal breast cancers after neoadjuvant chemotherapy. Clinical breast cancer. 2016;16(2):113-22.e1.

    Article  PubMed  Google Scholar 

  66. Overmoyer B, et al. Abstract OT3-05-01: TBCRC 039: phase II study of combination ruxolitinib (INCB018424) with preoperative chemotherapy for triple negative inflammatory breast cancer. Cancer Res. 2018;78(4 Supplement):OT3-05-01.

    Article  Google Scholar 

  67. Bertucci F, et al. NOTCH and DNA repair pathways are more frequently targeted by genomic alterations in inflammatory than in non-inflammatory breast cancers. Mol Oncol. 2020;14(3):504–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Robertson FM, et al. Molecular and pharmacological blockade of the EP4 receptor selectively inhibits both proliferation and invasion of human inflammatory breast cancer cells. J Exp Ther Oncol. 2008;7(4):299–312.

    CAS  PubMed  Google Scholar 

  69. Pan MR, et al. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. J Biol Chem. 2008;283(17):11155–63.

    Article  CAS  PubMed  Google Scholar 

  70. Majumder M, et al. EP4 as a therapeutic target for aggressive human breast cancer. Int J Mol Sci. 2018;19(4).

  71. •• Schmid P, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology. 2020;21(1):44–59 Practice changing study.

    Article  CAS  PubMed  Google Scholar 

  72. Bertucci F, et al. PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget. 2015;6(15):13506–19.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Van Berckelaer C, et al. Infiltrating stromal immune cells in inflammatory breast cancer are associated with an improved outcome and increased PD-L1 expression. Breast Cancer Res. 2019;21(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  74. •• Schmid P, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–21 New treatment strategy.

    Article  CAS  PubMed  Google Scholar 

  75. Lucci A, et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. The Lancet. Oncology. 2012;13(7):688–95.

    PubMed  Google Scholar 

  76. Cristofanilli M, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.

    Article  CAS  PubMed  Google Scholar 

  77. Mego M, et al. Circulating tumor cells (CTCs) are associated with abnormalities in peripheral blood dendritic cells in patients with inflammatory breast cancer. Oncotarget. 2017;8(22):35656–68.

    Article  PubMed  Google Scholar 

  78. Pierga J-Y, et al. Circulating tumour cells and pathological complete response: independent prognostic factors in inflammatory breast cancer in a pooled analysis of two multicentre phase II trials (BEVERLY-1 and -2) of neoadjuvant chemotherapy combined with bevacizumab. Ann Oncol. 2016;28(1):103–9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Sergio Crispino, Scientific Director ASSO and Scientific Director Anticancer Fund, for his insights and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

This study received funding from Associazione per lo Sviluppo della Scienza Oncologica (ASSO), Siena, Italy.

Corresponding author

Correspondence to Elena Vagia MD.

Ethics declarations

Conflict of Interest

Elena Vagia declares that she has no conflict of interest. Massimo Cristofanilli has received research funding from Eli Lilly, Pfizer, and G1 Therapeutics, and has received compensation for service as a consultant from CytoDyn, Eli Lilly, Pfizer, Sermonix, G1 Therapeutics, and Foundation Medicine.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vagia, E., Cristofanilli, M. New Treatment Strategies for the Inflammatory Breast Cancer. Curr. Treat. Options in Oncol. 22, 50 (2021). https://doi.org/10.1007/s11864-021-00843-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11864-021-00843-2

Keywords

Navigation