Skip to main content

Advertisement

Log in

Precision Medicine for Breast Cancer Utilizing Circulating Tumor DNA: It Is in the Blood

  • Breast Cancer (WJ Gradishar, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Liquid biopsy using blood components to assess circulating tumor DNA (ctDNA) is rapidly becoming a new standard-of-care technology in many tumor types, including breast cancer, due to the potential to provide predictive and prognostic information. The minimally invasive and repeatable nature of plasma based mutational testing is appealing for patients and facilitates enhanced disease monitoring. It is important for the clinician to understand the benefits and limitations of this emerging assay and the potential applications in breast cancer. Multiple technologies have been employed to assess breast cancer ctDNA with high sensitivity and specificity leading to assays that have been useful in research trials and are entering widespread clinical application. ctDNA analysis of breast cancer is of clinical utility today in selecting targeted therapy for advanced breast cancer, most notably by assessing PIK3CA mutations in hormone receptor–positive, HER2-negative disease. It will be employed in the near future in a variety of clinical settings including early detection of primary breast cancer, minimal residual disease after initial therapy, and use in advanced breast cancer for prognosis, early identification of non-response, and monitoring genomic markers of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4(6):650–61. https://doi.org/10.1158/2159-8290.CD-13-1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: a comprehensive review. Clin Genet. 2019;95(6):643–60. https://doi.org/10.1111/cge.13514.

    Article  CAS  PubMed  Google Scholar 

  3. Therascreen PIK3CA RGQ PCR Kit Instructions for Use (Handbook) In: Qiagen, editor. 2019.

  4. Juric D, Janku F, Rodon J, Burris HA, Mayer IA, Schuler M, et al. Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol. 2019;5(2):e184475. https://doi.org/10.1001/jamaoncol.2018.4475.

    Article  PubMed  Google Scholar 

  5. •• Andre F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/NEJMoa1813904. Phase 3 trial demonstrating value of ctDNA in selecting targeted therapy based on PIK3CA mutation status.

    Article  CAS  PubMed  Google Scholar 

  6. O'Leary B, Hrebien S, Morden JP, Beaney M, Fribbens C, Huang X, et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat Commun. 2018;9(1):896. https://doi.org/10.1038/s41467-018-03215-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rothe F, Silva MJ, Venet D, Campbell C, Bradburry I, Rouas G, et al. Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO phase III trial. Clin Cancer Res. 2019;25(12):3581–8. https://doi.org/10.1158/1078-0432.CCR-18-2521.

    Article  CAS  PubMed  Google Scholar 

  8. Paolillo C, Mu Z, Rossi G, Schiewer MJ, Nguyen T, Austin L, et al. Detection of activating estrogen receptor gene (ESR1) mutations in single circulating tumor cells. Clin Cancer Res. 2017;23(20):6086–93. https://doi.org/10.1158/1078-0432.CCR-17-1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O'Leary B, Kilburn L, et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol. 2018;29(1):145–53. https://doi.org/10.1093/annonc/mdx483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bidard FC, Callens C, Pistilli B, Dalenc F, de La Motte RT, Sabatier R, et al. Emergence of ESR1 mutation in cell-free DNA during first line aromatase inhibitor and palbociclib: an exploratory analysis of the PADA-1 trial. Ann Oncol. 2019;30:v105–v6. https://doi.org/10.1093/annonc/mdz242.002.

    Article  Google Scholar 

  11. Carausu M, Bidard FC, Callens C, Melaabi S, Jeannot E, Pierga JY, et al. ESR1 mutations: a new biomarker in breast cancer. Expert Rev Mol Diagn. 2019;19(7):599–611. https://doi.org/10.1080/14737159.2019.1631799.

    Article  CAS  PubMed  Google Scholar 

  12. Condorelli R, Spring L, O'Shaughnessy J, Lacroix L, Bailleux C, Scott V, et al. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann Oncol. 2018;29(3):640–5. https://doi.org/10.1093/annonc/mdx784.

    Article  CAS  PubMed  Google Scholar 

  13. Stover DG, Parsons HA, Ha G, Freeman SS, Barry WT, Guo H, et al. Association of cell-free DNA tumor fraction and somatic copy number alterations with survival in metastatic triple-negative breast cancer. J Clin Oncol. 2018;36(6):543–53. https://doi.org/10.1200/JCO.2017.76.0033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ben Lassoued A, Nivaggioni V, Gabert J. Minimal residual disease testing in hematologic malignancies and solid cancer. Expert Rev Mol Diagn. 2014;14(6):699–712. https://doi.org/10.1586/14737159.2014.927311.

    Article  CAS  PubMed  Google Scholar 

  15. Czyz A, Nagler A. The role of measurable residual disease (MRD) in hematopoietic stem cell transplantation for hematological malignancies focusing on acute leukemia. Int J Mol Sci. 2019;20(21). https://doi.org/10.3390/ijms20215362.

  16. McDonald BR, Contente-Cuomo T, Sammut SJ, Odenheimer-Bergman A, Ernst B, Perdigones N, et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci Transl Med. 2019;11(504). https://doi.org/10.1126/scitranslmed.aax7392.

  17. • Garcia-Murillas I, Chopra N, Comino-Mendez I, Beaney M, Tovey H, Cutts RJ, et al. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol. 2019. https://doi.org/10.1001/jamaoncol.2019.1838. Prospective determination of ctDNA predicting clinical relapse after primary therapy.

  18. Coombes RC, Page K, Salari R, Hastings RK, Armstrong A, Ahmed S, et al. Personalized detection of circulating tumor DNA antedates breast Cancer metastatic recurrence. Clin Cancer Res. 2019;25(14):4255–63. https://doi.org/10.1158/1078-0432.CCR-18-3663.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7(302):302ra133. https://doi.org/10.1126/scitranslmed.aab0021.

    Article  PubMed  Google Scholar 

  20. Sparano JA, Henry NL. Surveillance after treatment of localized breast cancer: time for reappraisal? J Natl Cancer Inst. 2019;111(4):339–41. https://doi.org/10.1093/jnci/djy153.

    Article  CAS  PubMed  Google Scholar 

  21. Madic J, Kiialainen A, Bidard F-C, Birzele F, Ramey G, Leroy Q, et al. Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int J Cancer. 2015;136(9):2158–65. https://doi.org/10.1002/ijc.29265.

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez BJ, Cordoba GD, Aranda AG, Alvarez M, Vicioso L, Perez CL, et al. Detection of TP53 and PIK3CA mutations in circulating tumor DNA using next-generation sequencing in the screening process for early breast cancer diagnosis. J Clin Med. 2019;8(8). https://doi.org/10.3390/jcm8081183.

  23. • Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–30. https://doi.org/10.1126/science.aar3247. Promising development of a test to detect multiple cancers, including breast cancer, with blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 2017;9(403). https://doi.org/10.1126/scitranslmed.aan2415.

  25. Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–23. https://doi.org/10.1373/clinchem.2007.095992.

    Article  CAS  PubMed  Google Scholar 

  26. Shan M, Yin H, Li J, Li X, Wang D, Su Y, et al. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer. Oncotarget. 2016;7(14):18485–94. https://doi.org/10.18632/oncotarget.7608.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bacolod MD, Huang J, Giardina SF, Feinberg PB, Mirza AH, Swistel A, et al. Prediction of blood-based biomarkers and subsequent design of bisulfite PCR-LDR-qPCR assay for breast cancer detection. BMC Cancer. 2020;20(1):85. https://doi.org/10.1186/s12885-020-6574-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung A, Kirchner T. Liquid biopsy in tumor genetic diagnosis. Dtsch Arztebl Int. 2018;115(10):169–74. https://doi.org/10.3238/arztebl.2018.0169.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pelle E, et al. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018;10:1758835918794630. https://doi.org/10.1177/1758835918794630.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chin RI, Chen K, Usmani A, Chua C, Harris PK, Binkley MS, et al. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA). Mol Diagn Ther. 2019;23(3):311–31. https://doi.org/10.1007/s40291-019-00390-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaiswal S, Ebert BL. MDS is a stem cell disorder after all. Cancer Cell. 2014;25(6):713–4. https://doi.org/10.1016/j.ccr.2014.06.001.

    Article  CAS  PubMed  Google Scholar 

  32. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. https://doi.org/10.1182/blood-2015-03-631747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Young AL, Challen GA, Birmann BM, Druley TE. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7:12484. https://doi.org/10.1038/ncomms12484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130(6):742–52. https://doi.org/10.1182/blood-2017-02-769869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Schwartzberg MD, FACP.

Ethics declarations

Conflict of Interest

Emily Miller declares that she has no conflict of interest. Lee Schwartzberg has received compensation from Amgen, Pfizer, Helsinn, Genentech/Roche, Genomic Health, Bristol-Myers Squibb, Myriad, AstraZeneca, and Bayer for service as a consultant.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, E., Schwartzberg, L. Precision Medicine for Breast Cancer Utilizing Circulating Tumor DNA: It Is in the Blood. Curr. Treat. Options in Oncol. 21, 89 (2020). https://doi.org/10.1007/s11864-020-00783-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00783-3

Keywords

Navigation