Skip to main content

Advertisement

Log in

Optimal Management of Patients with Advanced NSCLC Harboring High PD-L1 Expression and Driver Mutations

  • Lung Cancer (HA Wakelee and TA Leal, Section Editors)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Patients with stage IV or recurrent/metastatic non-small cell lung cancer (NSCLC) whose tumors harbor high PD-L1 expression and driver mutations with approved targeted treatments (EGFR, ALK, BRAFV600E, ROS1) should receive initial therapy with targeted therapy based on impressive clinical activity. PD-(L)1 inhibitors have demonstrated minimal activity in many driver mutation subsets including EGFR and ALK and appears to have more benefit in smoking-associated oncogenic drivers (KRAS, BRAF). For KRAS-driven tumors, co-mutations such as STK11/LKB1 are negative predictive markers of immunotherapy with or without chemotherapy. Therefore, driver mutations need to be evaluated before pursuing immunotherapy independent of PD-L1 expression level. Caution should be used with TKIs following or concurrent with immunotherapy owing to potentially increased toxicity. New immunotherapy combinations are needed especially for oncogene-driven tumors associated with never or light smoking history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31(8):1039–49. https://doi.org/10.1200/JCO.2012.45.3753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38. https://doi.org/10.1056/NEJMoa1704795.

    Article  CAS  PubMed  Google Scholar 

  3. Shaw AT, Riely GJ, Bang YJ, Kim DW, Camidge DR, Solomon BJ, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol. 2019;30(7):1121–6. https://doi.org/10.1093/annonc/mdz131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland A, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307–16. https://doi.org/10.1016/S1470-2045(17)30679-4.

    Article  CAS  PubMed  Google Scholar 

  5. De Braud FGM, Siena S, Barlesi F, Drilon A, Simmons BP, Huang X, et al. Entrectinib in locally advanced/metastatic ROS1 and NTRK fusion-positive non-small cell lung cancer (NSCLC): updated integrated analysis of STARTRK-2, STARTRK-1 and ALKA-372-001. Ann Oncol. 2019;30:609.

    Article  Google Scholar 

  6. Drilon A, Oxnard GR, Wirth L, Besse B, Gautschi O, Tan SWD et al., editors. PL02.08 - Registrational results of LIBRETTO-001: a phase 1/2 trial of LOXO-292 in patients with RET fusion-positive lung cancers. IASLC 20th World Conference on Lung Cancer; Barcelona 2019.

  7. Gainor JF, Lee DH, Curigliano G, Doebele RC, Kim DW, Baik CS, et al. Clinical activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients (pts) with advanced RET-fusion plus non-small cell lung cancer (NSCLC). J Clin Oncol. 2019;37(15).

  8. Govindan R, Fakih MG, Price TJ, Falchook GS, Desai J, Kuo JC et al., editors. OA02.02 - Phase 1 study of safety, tolerability, P­­K and efficacy of AMG 510, a novel KRAS G12C inhibitor, evaluated in NSCLC. IASLC 20th World Conference on Lung Cancer; Barcelona 2019.

  9. Drilon A, Clark J, Weiss J, Ou S, Camidge DR, Solomon B, et al. Updated antitumor activity of crizotinib in patients with MET Exon 14-altered advanced non-small cell lung cancer. J Thorac Oncol. 2018;13(10):S348. https://doi.org/10.1016/j.jtho.2018.08.300.

    Article  Google Scholar 

  10. Paik PK, Veillon R, Cortot AB, Felip E, Sakai H, Mazieres J, et al. Phase II study of tepotinib in NSCLC patients with METex14 mutations. J Clin Oncol. 2019;37(15).

  11. Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, et al. Capmatinib (INC280) in MET Delta exI4-mutated advanced non-small cell lung cancer (NSCLC): efficacy data from the phase II GEOMETRY mono-1 study. J Clin Oncol. 2019;37(15).

  12. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019. https://doi.org/10.1093/annonc/mdz167.

  13. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gumus M, Mazieres J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51. https://doi.org/10.1056/NEJMoa1810865.

    Article  CAS  PubMed  Google Scholar 

  14. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92. https://doi.org/10.1056/NEJMoa1801005.

    Article  CAS  PubMed  Google Scholar 

  15. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33. https://doi.org/10.1056/NEJMoa1606774.

    Article  CAS  PubMed  Google Scholar 

  16. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30. https://doi.org/10.1016/S0140-6736(18)32409-7.

    Article  CAS  PubMed  Google Scholar 

  17. Hellmann MD, Paz-Ares L, Bernabe Caro R, Zurawski B, Kim SW, Carcereny Costa E, et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N Engl J Med. 2019. https://doi.org/10.1056/NEJMoa1910231.

  18. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81. https://doi.org/10.1038/nrc2088.

    Article  CAS  PubMed  Google Scholar 

  19. Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50. https://doi.org/10.1056/NEJMoa1913662.

    Article  CAS  PubMed  Google Scholar 

  20. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25. https://doi.org/10.1056/NEJMoa1713137.

    Article  CAS  PubMed  Google Scholar 

  21. Yang JC, Sequist LV, Geater SL, Tsai CM, Mok TS, Schuler M, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015;16(7):830–8. https://doi.org/10.1016/S1470-2045(15)00026-1.

    Article  CAS  PubMed  Google Scholar 

  22. Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, et al. Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: a systematic review and meta-analysis. Jama Oncol. 2018;4(2):210–6. https://doi.org/10.1001/jamaoncol.2017.4427.

    Article  PubMed  Google Scholar 

  23. Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thorac Oncol. 2017;12(2):403–7. https://doi.org/10.1016/j.jtho.2016.10.007.

    Article  PubMed  Google Scholar 

  24. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016;22(18):4585–93. https://doi.org/10.1158/1078-0432.CCR-15-3101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, et al. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naive patients with advanced NSCLC. J Thorac Oncol. 2018;13(8):1138–45. https://doi.org/10.1016/j.jtho.2018.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, et al. Five-Year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. Journal of Clinical Oncology. 2019;37(28):2518. https://doi.org/10.1200/Jco.19.00934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garassino MC, Cho BC, Kim JH, Mazieres J, Vansteenkiste J, Lena H, et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol. 2018;19(4):521–36. https://doi.org/10.1016/S1470-2045(18)30144-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hegde PS, Wallin JJ, Mancao C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin Cancer Biol. 2018;52:117–24. https://doi.org/10.1016/j.semcancer.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  29. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301. https://doi.org/10.1056/NEJMoa1716948.

    Article  CAS  PubMed  Google Scholar 

  30. Reck M, Mok TSK, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 2019;7(5):387–401. https://doi.org/10.1016/S2213-2600(19)30084-0.

    Article  CAS  PubMed  Google Scholar 

  31. Reck M, Jotte R, Mok TSK, Lim DWT, Cappuzzo F, Orlandi F, et al. IMpower150: an exploratory analysis of efficacy outcomes in patients with EGFR mutations. Ann Oncol. 2019;30.

  32. Rudin C, Cervantes A, Dowlati A, Besse B, Ma B, Costa D, et al. Long-term safety and clinical activity results from a phase Ib study of erlotinib plus atezolizumab in advanced NSCLC. J Thorac Oncol. 2018;13(10):S407. https://doi.org/10.1016/j.jtho.2018.08.440.

    Article  Google Scholar 

  33. Gettinger S, Hellmann MD, Chow LQM, Borghaei H, Antonia S, Brahmer JR, et al. Nivolumab plus erlotinib in patients with EGFR-mutant advanced NSCLC. J Thorac Oncol. 2018;13(9):1363–72. https://doi.org/10.1016/j.jtho.2018.05.015.

    Article  PubMed  Google Scholar 

  34. Creelan BC, Yeh T, Kim SW, Nogami N, Kim DW, Chow LQ, et al. Phase I study of gefitinib (G) plus durvalumab (D) for locally advanced/metastatic non-small cell lung cancer (NSCLC) harbouring epidermal growth factor receptor (EGFR) sensitising mutations. Ann Oncol. 2019;30.

  35. Levy B, Paz-Ares L, Bennouna J, Felip E, Abreu DR, Isla D, et al. Afatinib with pembrolizumab for treatment of patients with locally advanced/metastatic squamous cell carcinoma of the lung: the LUX-Lung IO/KEYNOTE 497 study protocol. Clin Lung Cancer. 2019;20(3):e407–e12. https://doi.org/10.1016/j.cllc.2018.12.022.

    Article  CAS  PubMed  Google Scholar 

  36. Riess J, Kelly K, Schalper K, Shimoda M, Lim S, Monjazeb A, et al. Immunomodulatory effects of afatinib and pembrolizumab in EGFR-mutant NSCLC with progression on prior EGFR-TKI. J Thorac Oncol. 2018;13(10):S528. https://doi.org/10.1016/j.jtho.2018.08.724.

    Article  Google Scholar 

  37. Yang JC, Gadgeel SM, Sequist LV, Wu CL, Papadimitrakopoulou VA, Su WC, et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation. J Thorac Oncol. 2019;14(3):553–9. https://doi.org/10.1016/j.jtho.2018.11.028.

    Article  CAS  PubMed  Google Scholar 

  38. Ahn MJ, Yang J, Yu H, Saka H, Ramalingam S, Goto K, et al. Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: results from the TATTON phase Ib trial. J Thorac Oncol. 2016;11(4):S115. https://doi.org/10.1016/S1556-0864(16)30246-5.

    Article  Google Scholar 

  39. Chih-Hsin Yang J, Shepherd FA, Kim DW, Lee GW, Lee JS, Chang GC, et al. Osimertinib plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL brief report. J Thorac Oncol. 2019. https://doi.org/10.1016/j.jtho.2019.02.001.

  40. Schoenfeld AJ, Arbour KC, Rizvi H, Iqbal AN, Gadgeel SM, Girshman J, et al. Severe immune-related adverse events are common with sequential PD-(L)1 blockade and osimertinib. Ann Oncol. 2019;30(5):839–44. https://doi.org/10.1093/annonc/mdz077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial. Lancet. 2017;390(10089):29–39. https://doi.org/10.1016/S0140-6736(17)30565-2.

    Article  CAS  PubMed  Google Scholar 

  42. Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, et al. Brigatinib versus crizotinib in ALK-positive non-small-cell lung cancer. N Engl J Med. 2018;379(21):2027–39. https://doi.org/10.1056/NEJMoa1810171.

    Article  CAS  PubMed  Google Scholar 

  43. Yoneshima Y, Ijichi K, Anai S, Ota K, Otsubo K, Iwama E, et al. PD-L1 expression in lung adenocarcinoma harboring EGFR mutations or ALK rearrangements. Lung Cancer. 2018;118:36–40. https://doi.org/10.1016/j.lungcan.2018.01.024.

    Article  PubMed  Google Scholar 

  44. Amrith BP, Sharma M, Jain P, Joga S, Bothra SJ, Jajodia A, et al. PD-L1 expression in ALK rearranged NSCLC: all questions answered? Ann Oncol. 2019;30.

  45. Da Silva AVA, Tavora F, Neto FM, Oliveira ACDS, Alves M, Carneiro B, et al. PD-L1 expression, EGFR mutations and ALK expression in non-small cell lung cancer (NSCLC) patients from Brazil. J Thorac Oncol. 2018;13(10):S1020.

    Article  Google Scholar 

  46. Shaw AT, Lee SH, Ramalingam SS, Bauer TM, Boyer MJ, Costa EC. Avelumab (anti-PD-L1) in combination with crizotinib or lorlatinib in patients with previously treated advanced NSCLC: phase 1b results from JAVELIN Lung 101. J Clin Oncol. 2018;36(15). https://doi.org/10.1200/JCO.2018.36.15_suppl.9008.

  47. Spigel DR, Reynolds C, Waterhouse D, Garon EB, Chandler J, Babu S, et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation - positive advanced non-small cell lung cancer (CheckMate 370). J Thorac Oncol. 2018;13(5):682–8. https://doi.org/10.1016/j.jtho.2018.02.022.

    Article  PubMed  Google Scholar 

  48. Felip E, de Braud FG, Maur M, Loong HH, Shaw AT, Vansteenkiste JF, et al. Ceritinib plus nivolumab in patients with advanced ALK-rearranged non-small cell lung cancer: results of an open-label, multicenter, phase 1B study. J Thorac Oncol. 2019. https://doi.org/10.1016/j.jtho.2019.10.006.

  49. Kim DW, Gadgeel SM, Gettinger SN, Riely GJ, Oxnard GR, Mekhail T. Safety and clinical activity results from a phase Ib study of alectinib plus atezolizumab in ALK plus advanced NSCLC (aNSCLC). J Clin Oncol. 2018;36(15). https://doi.org/10.1200/JCO.2018.36.15_suppl.9009.

  50. Lin JJ, Chin E, Yeap BY, Ferris LA, Kamesan V, Lennes IT, et al. Increased hepatotoxicity associated with sequential immune checkpoint inhibitor and crizotinib therapy in patients with non-small cell lung cancer. J Thorac Oncol. 2019;14(1):135–40. https://doi.org/10.1016/j.jtho.2018.09.001.

    Article  CAS  PubMed  Google Scholar 

  51. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25. https://doi.org/10.1038/nature11404.

    Article  CAS  Google Scholar 

  52. Anguera G, Majem M. BRAF inhibitors in metastatic non-small cell lung cancer. J Thorac Dis. 2018;10(2):589–92. https://doi.org/10.21037/jtd.2018.01.129.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29(26):3574–9. https://doi.org/10.1200/JCO.2011.35.9638.

    Article  CAS  PubMed  Google Scholar 

  54. Alvarez JGB, Otterson GA. Agents to treat BRAF-mutant lung cancer. Drugs Context. 2019;8:212566. https://doi.org/10.7573/dic.212566.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34. https://doi.org/10.1016/j.cell.2012.08.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dudnik E, Peled N, Nechushtan H, Wollner M, Onn A, Agbarya A, et al. BRAF mutant lung cancer: programmed death ligand 1 expression, tumor mutational burden, microsatellite instability status, and response to immune check-point inhibitors. J Thorac Oncol. 2018;13(8):1128–37. https://doi.org/10.1016/j.jtho.2018.04.024.

    Article  CAS  PubMed  Google Scholar 

  57. Riely GJ, Kris MG, Rosenbaum D, Marks J, Li A, Chitale DA, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14(18):5731–4. https://doi.org/10.1158/1078-0432.CCR-08-0646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 2009;9(8):563–75. https://doi.org/10.1038/nrc2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77. https://doi.org/10.1158/2159-8290.CD-14-1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018;8(7):822–35. https://doi.org/10.1158/2159-8290.CD-18-0099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Skoulidis F, Arbour KC, Hellmann MD, Patil PD, Marmarelis ME, Awad MM, et al. Association of STK11/LKB1 genomic alterations with lack of benefit from the addition of pembrolizumab to platinum doublet chemotherapy in non-squamous non-small cell lung cancer. J Clin Oncol. 2019;37(15). https://doi.org/10.1200/JCO.2019.37.15_suppl.102.

  62. Shire N, Golozar A, Collins J, Fraeman K, Nordstrom B, McEwen R et al., editors. OA07.02 - LKB1 mutations in metastatic non-small cell lung cancer (mNSCLC): prognostic value in the real world. IASLC 20th World Conference on Lung Cancer; Barcelona 2019 .

  63. Arbour KC, Jordan E, Kim HR, Dienstag J, Yu HA, Sanchez-Vega F, et al. Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. Clin Cancer Res. 2018;24(2):334–40. https://doi.org/10.1158/1078-0432.CCR-17-1841.

    Article  CAS  PubMed  Google Scholar 

  64. Goeman F, De Nicola F, Scalera S, Sperati F, Gallo E, Ciuffreda L, et al. Mutations in the KEAP1-NFE2L2 pathway define a molecular subset of rapidly progressing lung adenocarcinoma. J Thorac Oncol. 2019;14(11):1924–34. https://doi.org/10.1016/j.jtho.2019.07.003.

    Article  CAS  PubMed  Google Scholar 

  65. Janes MR, Zhang J, Li LS, Hansen R, Peters U, Guo X, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172(3):578–89e17. https://doi.org/10.1016/j.cell.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  66. Fakih M, O'Neil B, Price TJ, Falchook GS, Desai J, Kuo J, et al. Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12C inhibitor, in advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):3003. https://doi.org/10.1200/JCO.2019.37.15_suppl.3003.

    Article  Google Scholar 

  67. Jänne PA, Papadopoulos K, Ou I, Rybkin I, Johnson M, editors. A phase 1 clinical trial evaluating the pharmacokinetics (PK), safety, and clinical activity of MRTX849, a mutant-selective small molecule KRAS G12C inhibitor, in advanced solid tumors. AACR-NCI-EORTC International Conference on Molecular Targets; Boston, MA2019 ; .

  68. Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, et al. Molecular determinants of response to anti–programmed cell death (PD)-1 and anti–programmed death-ligand 1 (PD-L1) blockade in patients with non–small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41. https://doi.org/10.1200/JCO.2017.75.3384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8. https://doi.org/10.1126/science.aaa1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim JH, Kim HS, Kim BJ. Prognostic value of smoking status in non-small-cell lung cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Oncotarget. 2017;8(54):93149–55. https://doi.org/10.18632/oncotarget.18703.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Norum J, Nieder C. Tobacco smoking and cessation and PD-L1 inhibitors in non-small cell lung cancer (NSCLC): a review of the literature. ESMO Open. 2018;3(6):e000406. https://doi.org/10.1136/esmoopen-2018-000406.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30(35):4352–9. https://doi.org/10.1200/JCO.2012.44.1477.

    Article  CAS  PubMed  Google Scholar 

  73. Offin M, Guo R, Wu SL, Sabari J, Land JD, Ni A, et al. Immunophenotype and response to immunotherapy of RET-rearranged lung cancers. JCO Precis Oncol. 2019;3. https://doi.org/10.1200/PO.18.00386.

  74. Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71. https://doi.org/10.1056/NEJMoa1406766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Landi L, Chiari R, Tiseo M, D'Inca F, Dazzi C, Chella A, et al. Crizotinib in MET deregulated or ROS1 rearranged pretreated non-small-cell lung cancer (METROS): a phase II, prospective, multicentre, two-arms trial. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432.CCR-19-0994.

  76. Drilon A, Barlesi F, Braud FD, Cho BC, Ahn M-J, Siena S, et al. Abstract CT192: entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC): integrated analysis of ALKA-372-001, STARTRK-1 and STARTRK-2. Cancer Res. 2019;79:CT192-CT.

    Google Scholar 

  77. Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27(10):1667–74. https://doi.org/10.1200/JCO.2008.19.1635.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30. https://doi.org/10.1200/JCO.2015.63.4600.

    Article  CAS  PubMed  Google Scholar 

  79. Westover D, Zugazagoitia J, Cho BC, Lovly CM, Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 2018;29(suppl_1):i10–i9. https://doi.org/10.1093/annonc/mdx703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ramalingam SS, Rukazenkov Y, Todd A, Markovets A, Chmielecki J, Barrett JC, et al. LBA50Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. Ann Oncol. 2018;29(suppl_8). https://doi.org/10.1093/annonc/mdy424.063.

  81. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9. https://doi.org/10.1158/2159-8290.CD-14-1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9. https://doi.org/10.1158/2159-8290.CD-15-0285.

    Article  CAS  PubMed  Google Scholar 

  83. Pasquini G, Giaccone G. C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs. 2018;27(4):363–75. https://doi.org/10.1080/13543784.2018.1462336.

    Article  CAS  PubMed  Google Scholar 

  84. Wang SXY, Zhang BM, Wakelee HA, Koontz MZ, Pan M, Diehn M, et al. Case series of MET exon 14 skipping mutation-positive non-small-cell lung cancers with response to crizotinib and cabozantinib. Anti-Cancer Drugs. 2019;30(5):537–41. https://doi.org/10.1097/CAD.0000000000000765.

    Article  CAS  PubMed  Google Scholar 

  85. Awad MM, Leonardi GC, Kravets S, Dahlberg SE, Drilon A, Noonan SA, et al. Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: a retrospective analysis. Lung Cancer. 2019;133:96–102. https://doi.org/10.1016/j.lungcan.2019.05.011.

    Article  PubMed  Google Scholar 

  86. Camidge DR, Otterson GA, Clark JW, Ou SHI, Weiss J, Ades S. Crizotinib in patients (pts) with MET-amplified non-small cell lung cancer (NSCLC): updated safety and efficacy findings from a phase 1 trial. J Clin Oncol. 2018;36(15). https://doi.org/10.1200/JCO.2018.36.15_suppl.9062.

  87. Sabari JK, Leonardi GC, Shu CA, Umeton R, Montecalvo J, Ni A, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–91. https://doi.org/10.1093/annonc/mdy334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29. https://doi.org/10.1056/NEJMoa1709937.

    Article  CAS  PubMed  Google Scholar 

  89. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–50. https://doi.org/10.1056/NEJMoa1809697.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin A. Chen MD.

Ethics declarations

Conflict of Interest

Justin A. Chen receives AACR-AstraZeneca grant support (starting July 2020); and Jonathan W. Riess has received research funding (paid to his institution) from Boehringer Ingelheim, Merck, Novartis, and AstraZeneca; has received honoraria for service on advisory boards from Celgene, Heron, Takeda, AbbVie, Boehringer Ingelhim, Loxo Oncology, Spectrum, and Medtronic, and received compensation for service as a consultant from Celgene.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article part of the Topical Collection on Lung Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J.A., Riess, J.W. Optimal Management of Patients with Advanced NSCLC Harboring High PD-L1 Expression and Driver Mutations. Curr. Treat. Options in Oncol. 21, 60 (2020). https://doi.org/10.1007/s11864-020-00750-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-00750-y

Keywords

Navigation