Skip to main content

Advertisement

Log in

The Role of Aspirin, Vitamin D, Exercise, Diet, Statins, and Metformin in the Prevention and Treatment of Colorectal Cancer

  • Lower Gastrointestinal Cancers (AB Benson, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Colorectal cancer (CRC) is a worldwide health problem leading to significant morbidity and mortality. Several strategies based on either lifestyle modifications or pharmacological interventions have been developed in an attempt to reduce the risk of CRC. In this review article, we discuss these interventions including aspirin (and other non-steroidal anti-inflammatory drugs), vitamin D, exercise, diet, statins, and metformin. Depending upon the risk of developing CRC, the current evidence supports the beneficial role of aspirin, vitamin D, diet, and exercise especially in high-risk individuals (advanced adenoma or CRC). However, even with these established interventions, there are significant knowledge gaps such as doses of aspirin and 25-hydroxy vitamin D are not well established. Similarly, there is no convincing data from randomized controlled trials that a high fiber diet or a low animal fat diet reduces the risk of CRC. Some potential interventions, such as statins and metformin, do not have convincing data for clinical use even in high-risk individuals. However, these may have emerging roles in the prevention and treatment of CRC. Greater understanding of molecular mechanisms and the application of genomic tools to risk stratify an individual and tailor the interventions based on that individual’s risk will help further advance the field. Some of this work is already underway and is a focus of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

RR:

Relative risk

OR:

Odds ratio

CI:

Confidence interval

NSAID:

Non-steroidal anti-inflammatory drugs

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  2. Flossmann E et al. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet. 2007;369(9573):1603–13.

    CAS  PubMed  Google Scholar 

  3. Rothwell PM et al. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376(9754):1741–50.

    CAS  PubMed  Google Scholar 

  4. Rothwell PM et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41.

    CAS  PubMed  Google Scholar 

  5. Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res. 1988;48(15):4399–404.

    CAS  PubMed  Google Scholar 

  6. Dube C et al. The use of aspirin for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med. 2007;146(5):365–75.

    PubMed  Google Scholar 

  7. Rostom A et al. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors for primary prevention of colorectal cancer: a systematic review prepared for the U.S. Preventive Services Task Force. Ann Intern Med. 2007;146(5):376–89.

    PubMed  Google Scholar 

  8. Cole BF et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J Natl Cancer Inst. 2009;101(4):256–66.

    CAS  PubMed  Google Scholar 

  9. Burn J et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378(9809):2081–7.

    PubMed Central  PubMed  Google Scholar 

  10. Cook NR et al. Low-dose aspirin in the primary prevention of cancer the women’s health study: a randomized controlled trial. JAMA J Am Med Assoc. 2005;294(1):47–55.

    CAS  Google Scholar 

  11. Ridker PM et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352(13):1293–304.

    CAS  PubMed  Google Scholar 

  12. Sung JJ. Is aspirin for colorectal cancer prevention on the prime time yet? Gut. 2014;63(11):1691–2. Concise review and perspective on role of aspirin in colorectal cancer prevention highlighting major issues and their limitations.

    CAS  PubMed  Google Scholar 

  13. Cook NR et al. Alternate-day, low-dose aspirin and cancer risk: long-term observational follow-up of a randomized trial. Ann Intern Med. 2013;159(2):77–85. This study reported on the 10 years observational follow-up of the Womens Health Study (a randomized trial) showing benefit of 100 mg alternate-day dosing in colorectal cancer risk reduction in healthy women.

    PubMed Central  PubMed  Google Scholar 

  14. Steinbach G et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342(26):1946–52.

    CAS  PubMed  Google Scholar 

  15. Higuchi T et al. A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin Cancer Res. 2003;9(13):4756–60.

    CAS  PubMed  Google Scholar 

  16. Bertagnolli MM et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355(9):873–84.

    CAS  PubMed  Google Scholar 

  17. Arber N et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006;355(9):885–95.

    CAS  PubMed  Google Scholar 

  18. Solomon SD et al. Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: the cross trial safety analysis. Circulation. 2008;117(16):2104–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bertagnolli MM et al. Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev Res (Phila). 2009;2(4):310–21.

    CAS  Google Scholar 

  20. Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 2012;9(5):259–67. An extensive review describing the current evidence in support of beneficial effect of aspirin and COX-2 inhibitors. The review also discusses potential adverse effects and mechanism of action of aspirin in great detail.

    CAS  PubMed  Google Scholar 

  21. Liao X, Lochhead P, Nishihara R. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367(17):1596–606. A retrospective analysis that showed higher CRC-specific survival among aspirin-using patients with mutated-PIK3CA tumors as compared to wild type-PIK3CA tumors.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Dougherty U et al. Epidermal growth factor receptor controls flat dysplastic aberrant crypt foci development and colon cancer progression in the rat azoxymethane model. Clin Cancer Res. 2008;14(8):2253–62.

    CAS  PubMed  Google Scholar 

  23. Chan AT, Fuchs CS, Ogino S. Aspirin use and survival after diagnosis of colorectal cancer. Gastroenterology. 2009;136(5):A55.

    Google Scholar 

  24. Kothari N et al. Impact of regular aspirin use on overall and cancer-specific survival in patients with colorectal cancer harboring a PIK3CA mutation. Acta Oncol. 2015;54(4):487–92. A subsequent study assessing the CRC-specific survival in patients with mutated-PIK3CA tumors versus wild-type tumors showing no survival benefit.

    CAS  PubMed  Google Scholar 

  25. Nan H et al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA. 2015;313(11):1133–42. A case-control study reporting the protective effect of aspirin to be highly correlated with two single-nucleotide polymorphisms (rs2965667 and rs10505806) found in 96% of the population.

    CAS  PubMed  Google Scholar 

  26. Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol. 1980;9(3):227–31.

    CAS  PubMed  Google Scholar 

  27. Hanchette CL, Schwartz GG. Geographic patterns of prostate cancer mortality. Evidence for a protective effect of ultraviolet radiation. Cancer. 1992;70(12):2861–9.

    CAS  PubMed  Google Scholar 

  28. Li MA et al. Review: the impacts of circulating 25-Hydroxyvitamin D levels on cancer patient outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(7):2327–36. A meta-analysis 25 studies with 17,332 patients reporting a positive association between circulating 25(OH)D levels at diagnosis and cancer outcomes.

    CAS  PubMed  Google Scholar 

  29. Ma YL et al. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol. 2011;29(28):3775–82.

    CAS  PubMed  Google Scholar 

  30. Feskanich D et al. Plasma vitamin D metabolites and risk of colorectal cancer in women. Cancer Epidemiol Biomark Prev. 2004;13(9):1502–8.

    CAS  Google Scholar 

  31. Otani T et al. Plasma vitamin D and risk of colorectal cancer: the Japan Public Health Center-based prospective study. Br J Cancer. 2007;97(3):446–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Woolcott CG et al. Plasma 25-hydroxyvitamin D levels and the risk of colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2010;19(1):130–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Wu K et al. A nested case-control study of plasma 25-hydroxyvitamin D concentrations and risk of colorectal cancer. J Natl Cancer Inst. 2007;99(14):1120–9.

    CAS  PubMed  Google Scholar 

  34. Weinstein SJ et al. Serum 25-hydroxyvitamin D, vitamin D binding protein and risk of colorectal cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Int J Cancer. 2015;136(6):E654–64. A prospective study of serum 25(OH)D and vitamin D binding protein concentrations and CRC risk in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial reporting a higher vitamin D level is associated with lower risk of CRC.

    CAS  PubMed  Google Scholar 

  35. Ishihara J et al. Dietary calcium, vitamin D, and the risk of colorectal cancer. Am J Clin Nutr. 2008;88(6):1576–83.

    CAS  PubMed  Google Scholar 

  36. Lipworth L et al. Dietary Vitamin D intake and cancers of the colon and rectum: a case-control study in Italy. Nutr Cancer Int J. 2009;61(1):70–5.

    CAS  Google Scholar 

  37. Mizoue T et al. Calcium, dairy foods, vitamin D, and colorectal cancer risk: the Fukuoka colorectal cancer study. Cancer Epidemiol Biomark Prev. 2008;17(10):2800–7.

    CAS  Google Scholar 

  38. Terry P et al. Dietary calcium and vitamin D intake and risk of colorectal cancer: a prospective cohort study in women. Nutr Cancer Int J. 2002;43(1):39–46.

    CAS  Google Scholar 

  39. Theodoratou E et al. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348:g2035. An umbrella review (including meta-analyses and systematic review to assess the effect of vitamin D on cancer and other health problems) showing a beneficial effect of higher vitamin D level on CRC.

    PubMed Central  PubMed  Google Scholar 

  40. Touvier M et al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2011;20(5):1003–16.

    CAS  PubMed  Google Scholar 

  41. Song M, Garrett WS, Chan AT. Nutrients, Foods, and Colorectal Cancer Prevention. Gastroenterology, 2015. A thorough review of current evidence for different dietary nutrients for the prevention of CRC.

  42. LeBlanc ES et al. Screening for vitamin D deficiency: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2015;162(2):109–22. Guidelines based on current evidence for the diagnosis and treatment of vitamin D deficiency.

    PubMed  Google Scholar 

  43. Gorham ED et al. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.

    PubMed  Google Scholar 

  44. Wactawski-Wende J et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med. 2006;354(7):684–96.

    CAS  PubMed  Google Scholar 

  45. Bolland MJ et al. Calcium and vitamin D supplements and health outcomes: a reanalysis of the Women’s Health Initiative (WHI) limited-access data set. Am J Clin Nutr. 2011;94(4):1144–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Chlebowski RT, Pettinger M, Kooperberg C. Caution in reinterpreting the Women’s Health Initiative (WHI) Calcium and Vitamin D Trial breast cancer results. Am J Clin Nutr. 2012;95(1):258–9. author reply 259.

    CAS  PubMed  Google Scholar 

  47. Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.

    CAS  PubMed  Google Scholar 

  48. Feldman D et al. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–57. An extensive review on the epidemiological, preclinical and clinical studies assessing the role of vitamin D in cancer prevention and the potential mechanisms for the same.

    CAS  PubMed  Google Scholar 

  49. Bischoff-Ferrari HA et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84(1):18–28.

    CAS  PubMed  Google Scholar 

  50. Ng K et al. Dose response to vitamin D supplementation in African Americans: results of a 4-arm, randomized, placebo-controlled trial(1-4). Am J Clin Nutr. 2014;99(3):587–98. A randomized trial to assess the dose-response relationship between vitamin D3 intake and recommended plasma 25(OH)D level for cancer prevention in African American population.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Garland CF et al. Vitamin D for cancer prevention: global perspective. Ann Epidemiol. 2009;19(7):468–83.

    PubMed  Google Scholar 

  52. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, et al., editors. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US); 2011. http://www.ncbi.nlm.nih.gov/books/NBK56070/.

  53. LeBlanc E, et al. Screening for Vitamin D Deficiency: Systematic Review for the U.S. Preventive Services Task Force Recommendation. Evidence Synthesis No. 119. AHRQ Publication No. 13-05183-EF-1. Rockville (MD): Agency for Healthcare Research and Quality; 2014. A systematic review and proposed guidelines for the treatment of vitamin D deficiency in asymptomatic adults

  54. Jones G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr. 2008;88(2):582S–6.

    CAS  PubMed  Google Scholar 

  55. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69(5):842–56.

    CAS  PubMed  Google Scholar 

  56. Wolin KY, Tuchman H. Physical activity and gastrointestinal cancer prevention. Recent Results Cancer Res. 2011;186:73–100.

    PubMed  Google Scholar 

  57. Giovannucci E et al. Physical activity, obesity, and risk for colon cancer and adenoma in men. Ann Intern Med. 1995;122(5):327–34.

    CAS  PubMed  Google Scholar 

  58. Isomura K et al. Physical activity and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci. 2006;97(10):1099–104.

    CAS  PubMed  Google Scholar 

  59. Howard RA et al. Physical activity, sedentary behavior, and the risk of colon and rectal cancer in the NIH-AARP Diet and Health Study. Cancer Causes Control. 2008;19(9):939–53.

    PubMed Central  PubMed  Google Scholar 

  60. Boyle T et al. Timing and intensity of recreational physical activity and the risk of subsite-specific colorectal cancer. Cancer Causes Control. 2011;22(12):1647–58.

    PubMed  Google Scholar 

  61. Boyle T et al. Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst. 2012;104(20):1548–61. A systematic review and meta-analysis of 21 studies showing a protective effect of physical activity proximal as well as distal CRC.

    PubMed  Google Scholar 

  62. Allgayer H, Nicolaus S, Schreiber S. Decreased interleukin-1 receptor antagonist response following moderate exercise in patients with colorectal carcinoma after primary treatment. Cancer Detect Prev. 2004;28(3):208–13.

    CAS  PubMed  Google Scholar 

  63. Allgayer H et al. Short-term moderate exercise programs reduce oxidative DNA damage as determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry in patients with colorectal carcinoma following primary treatment. Scand J Gastroenterol. 2008;43(8):971–8.

    CAS  PubMed  Google Scholar 

  64. Bourke L et al. Pragmatic lifestyle intervention in patients recovering from colon cancer: a randomized controlled pilot study. Arch Phys Med Rehabil. 2011;92(5):749–55.

    PubMed  Google Scholar 

  65. Courneya KS et al. A randomized trial of exercise and quality of life in colorectal cancer survivors. Eur J Cancer Care (Engl). 2003;12(4):347–57.

    CAS  Google Scholar 

  66. Pinto BM et al. Home-based physical activity intervention for colorectal cancer survivors. Psychooncology. 2013;22(1):54–64.

    PubMed  Google Scholar 

  67. Cramer H et al. A systematic review and meta-analysis of exercise interventions for colorectal cancer patients. Eur J Cancer Care (Engl). 2014;23(1):3–14. A systematic review and meta-analysis of 5 randomized controlled studies showing a no short-term effects of exercise on quality of life or fatigue however there was beneficial effect on physical fitness.

    CAS  Google Scholar 

  68. Je Y et al. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int J Cancer. 2013;133(8):1905–13. A meta-analysis of prospective cohort studies showing a decreased relative risk for CRC in patients who were physically active before the diagnosis as well as decreased CRC-specific mortality in patients who continued to be physically active post-diagnosis.

    CAS  PubMed  Google Scholar 

  69. Arem H et al. Pre- and postdiagnosis physical activity, television viewing, and mortality among patients with colorectal cancer in the National Institutes of Health-AARP Diet and Health Study. J Clin Oncol. 2015;33(2):180–8. A study reporting an inverse association between the overall and disease-specific mortality and leisure time physical activity before and after the CRC diagnosis.

    PubMed  Google Scholar 

  70. Meyerhardt JA et al. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol. 2006;24(22):3535–41.

    PubMed  Google Scholar 

  71. Basterfield L, Reul JM, Mathers JC. Impact of physical activity on intestinal cancer development in mice. J Nutr. 2005;135(12 Suppl):3002S–8.

    CAS  PubMed  Google Scholar 

  72. Ju J et al. Voluntary exercise inhibits intestinal tumorigenesis in Apc(Min/+) mice and azoxymethane/dextran sulfate sodium-treated mice. BMC Cancer. 2008;8:316.

    PubMed Central  PubMed  Google Scholar 

  73. Burkitt DP. Epidemiology of cancer of the colon and rectum. Cancer. 1971;28(1):3–13.

    CAS  PubMed  Google Scholar 

  74. Kritchevsky D. Epidemiology of fibre, resistant starch and colorectal cancer. Eur J Cancer Prev. 1995;4(5):345–52.

    CAS  PubMed  Google Scholar 

  75. Hamer HM et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104–19.

    CAS  PubMed  Google Scholar 

  76. Fung KY et al. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr. 2012;108(5):820–31.

    CAS  PubMed  Google Scholar 

  77. Peters U et al. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet. 2003;361(9368):1491–5.

    PubMed  Google Scholar 

  78. Bingham SA et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet. 2003;361(9368):1496–501.

    PubMed  Google Scholar 

  79. Larsson SC et al. Whole grain consumption and risk of colorectal cancer: a population-based cohort of 60,000 women. Br J Cancer. 2005;92(9):1803–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Park Y et al. Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA. 2005;294(22):2849–57.

    CAS  PubMed  Google Scholar 

  81. Alberts DS et al. Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians’ Network. N Engl J Med. 2000;342(16):1156–62.

    CAS  PubMed  Google Scholar 

  82. Schatzkin A et al. Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N Engl J Med. 2000;342(16):1149–55.

    CAS  PubMed  Google Scholar 

  83. McKeown-Eyssen GE et al. A randomized trial of a low fat high fibre diet in the recurrence of colorectal polyps. Toronto Polyp Prevention Group. J Clin Epidemiol. 1994;47(5):525–36.

    CAS  PubMed  Google Scholar 

  84. MacLennan R et al. Randomized trial of intake of fat, fiber, and beta carotene to prevent colorectal adenomas. J Natl Cancer Inst. 1995;87(23):1760–6.

    CAS  PubMed  Google Scholar 

  85. Willett WC et al. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med. 1990;323(24):1664–72.

    CAS  PubMed  Google Scholar 

  86. Beresford SA et al. Low-fat dietary pattern and risk of colorectal cancer: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006;295(6):643–54.

    CAS  PubMed  Google Scholar 

  87. Flood A et al. Meat, fat, and their subtypes as risk factors for colorectal cancer in a prospective cohort of women. Am J Epidemiol. 2003;158(1):59–68.

    PubMed  Google Scholar 

  88. Jarvinen R et al. Dietary fat, cholesterol and colorectal cancer in a prospective study. Br J Cancer. 2001;85(3):357–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Lin J et al. Dietary fat and fatty acids and risk of colorectal cancer in women. Am J Epidemiol. 2004;160(10):1011–22.

    PubMed  Google Scholar 

  90. Terry P et al. No association between fat and fatty acids intake and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2001;10(8):913–4.

    CAS  PubMed  Google Scholar 

  91. Liu L et al. Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur J Nutr. 2011;50(3):173–84.

    CAS  PubMed  Google Scholar 

  92. Pietinen P et al. Diet and risk of colorectal cancer in a cohort of Finnish men. Cancer Causes Control. 1999;10(5):387–96.

    CAS  PubMed  Google Scholar 

  93. Norat T et al. Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst. 2005;97(12):906–16.

    PubMed Central  PubMed  Google Scholar 

  94. Kampman E et al. Vegetable and animal products as determinants of colon cancer risk in Dutch men and women. Cancer Causes Control. 1995;6(3):225–34.

    CAS  PubMed  Google Scholar 

  95. Wu S et al. Fish consumption and colorectal cancer risk in humans: a systematic review and meta-analysis. Am J Med. 2012;125(6):551–9 e5. A meta-analysis of twenty-two prospective cohort and 19 case-control studies reporting a significant inverse association between fish consumption and the risk of CRC.

    PubMed  Google Scholar 

  96. West NJ et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut. 2010;59(7):918–25.

    CAS  PubMed  Google Scholar 

  97. Dougherty U et al. Epidermal growth factor receptor is required for colonic tumor promotion by dietary fat in the azoxymethane/dextran sulfate sodium model: roles of transforming growth factor-{alpha} and PTGS2. Clin Cancer Res. 2009;15(22):6780–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Lindner MA. A fish oil diet inhibits colon cancer in mice. Nutr Cancer. 1991;15(1):1–11.

    CAS  PubMed  Google Scholar 

  99. Singh J, Hamid R, Reddy BS. Dietary fat and colon cancer: modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer. Cancer Res. 1997;57(2):253–8.

    CAS  PubMed  Google Scholar 

  100. Takahashi M et al. Suppression of azoxymethane-induced rat colon carcinoma development by a fish oil component, docosahexaenoic acid (DHA). Carcinogenesis. 1997;18(7):1337–42.

    CAS  PubMed  Google Scholar 

  101. Chapkin RS et al. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids. 2008;153(1):14–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Wu K et al. Calcium intake and risk of colon cancer in women and men. J Natl Cancer Inst. 2002;94(6):437–46.

    PubMed  Google Scholar 

  103. Shaukat A, Scouras N, Schunemann HJ. Role of supplemental calcium in the recurrence of colorectal adenomas: a metaanalysis of randomized controlled trials. Am J Gastroenterol. 2005;100(2):390–4.

    CAS  PubMed  Google Scholar 

  104. Martinez ME, Jacobs ET. Calcium supplementation and prevention of colorectal neoplasia: lessons from clinical trials. J Natl Cancer Inst. 2007;99(2):99–100.

    PubMed  Google Scholar 

  105. Keum N et al. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. Int J Cancer. 2014;135(8):1940–8. A meta-analysis showing an inverse relationship between the dietary as well as supplemental calcium intake and CRC risk based on prospective observational studies.

    CAS  PubMed  Google Scholar 

  106. Newmark HL, Wargovich MJ, Bruce WR. Colon cancer and dietary fat, phosphate, and calcium: a hypothesis. J Natl Cancer Inst. 1984;72(6):1323–5.

    CAS  PubMed  Google Scholar 

  107. Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. Ann N Y Acad Sci. 2001;952:73–87.

    CAS  PubMed  Google Scholar 

  108. Fedirko V et al. Effects of supplemental vitamin D and calcium on oxidative DNA damage marker in normal colorectal mucosa: a randomized clinical trial. Cancer Epidemiol Biomarkers Prev. 2010;19(1):280–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Lochhead P, Chan AT. Statins and colorectal cancer. Clin Gastroenterol Hepatol. 2013;11(2):109–18. A thorough review on the current evidence, mechanism of action, adverse effects, and future potential of statins in CRC prevention.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Katz MS. Therapy insight: potential of statins for cancer chemoprevention and therapy. Nat Clin Pract Oncol. 2005;2(2):82–9.

    CAS  PubMed  Google Scholar 

  111. Demierre M-F et al. Statins and cancer prevention. Nat Rev Cancer. 2005;5(12):930–42.

    CAS  PubMed  Google Scholar 

  112. Poynter JN et al. Statins and the risk of colorectal cancer. N Engl J Med. 2005;352(21):2184–92.

    CAS  PubMed  Google Scholar 

  113. Broughton T, Sington J, Beales IL. Statin use is associated with a reduced incidence of colorectal cancer: a colonoscopy-controlled case–control study. BMC Gastroenterol. 2012;12(1):1.

    Google Scholar 

  114. Lakha F et al. Statin use and association with colorectal cancer survival and risk: case control study with prescription data linkage. BMC Cancer. 2012;12:487.

    PubMed Central  PubMed  Google Scholar 

  115. Sehdev A et al. The role of statins for primary prevention in non-elderly colorectal cancer patients. Anticancer Res. 2014;34(9):5043–50. This is the largest case-control study of statins in non-elderly (age <65 years) US population reporting a 26% reduced odds of developing CRC with statin intake.

    CAS  PubMed  Google Scholar 

  116. Blais L, Desgagné A, LeLorier J. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of cancer: a nested case-control study. Arch Intern Med. 2000;160:2363–8.

    CAS  PubMed  Google Scholar 

  117. Graaf MR. The risk of cancer in users of statins. J Clin Oncol. 2004;22(12):2388–94.

    CAS  PubMed  Google Scholar 

  118. Kaye JA, Jick H. Statin use and cancer risk in the General Practice Research Database. Br J Cancer. 2004;90(3):635–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Vinogradova Y et al. Risk of colorectal cancer in patients prescribed statins, nonsteroidal anti-inflammatory drugs, and cyclooxygenase-2 inhibitors: nested case-control study. Gastroenterology. 2007;133(2):393–402.

    PubMed  Google Scholar 

  120. Coogan PF, Rosenberg L, Strom BL. Statin use and the risk of 10 cancers. Epidemiology. 2007;18:213–9.

    PubMed  Google Scholar 

  121. Coogan PF, Smith J, Rosenberg L. Statin use and risk of colorectal cancer. JNCI J Natl Cancer Inst. 2007;99(1):32–40.

  122. Yang Y-X et al. Chronic statin therapy and the risk of colorectal cancer. Pharmacoepidemiol Drug Saf. 2008;17(9):869–76.

    CAS  PubMed  Google Scholar 

  123. Boudreau DM, et al. Cardiovascular medication use and risk for colorectal cancer. Cancer Epidemiol Biomarkers Prev Publ Am Assoc Cancer Res, cosponsored by the American Society of Preventive Oncology, 2008;17(11):3076–80.

  124. Shadman M et al. Non-steroidal anti-inflammatory drugs and statins in relation to colorectal cancer risk. World J Gastroenterol. 2009;15(19):2336–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Robertson DJ et al. Neither long-term statin use nor atherosclerotic disease is associated with risk of colorectal cancer. Clin Gastroenterol Hepatol. 2010;8(12):1056–61.

    CAS  PubMed  Google Scholar 

  126. Vinogradova Y, Coupland C, Hippisley-Cox J. Exposure to statins and risk of common cancers: a series of nested case-control studies. BMC Cancer. 2011;11(1):409.

    PubMed Central  PubMed  Google Scholar 

  127. Cheng M-H. Statin use and the risk of colorectal cancer: a population-based case-control study. World J Gastroenterol. 2011;17(47):5197.

    PubMed Central  PubMed  Google Scholar 

  128. Lee JE et al. Statin use and colorectal cancer risk according to molecular subtypes in two large prospective cohort studies. Cancer Prev Res. 2011;4(11):1808–15.

    CAS  Google Scholar 

  129. Simon MS, Rosenberg CA, Rodabough RJ. Prospective analysis of association between use of statins or other lipid-lowering agents and colorectal cancer risk. Ann Epidemiol. 2012;22:17–27. A prospective analyses of 1,59,219 postmenopausal women of the Women’s Health Initiative cohort found a significantly reduced risk of CRC with the use of lovastatin.

    PubMed Central  PubMed  Google Scholar 

  130. Jacobs EJ, Rodriguez C, Brady KA. Cholesterol-lowering drugs and colorectal cancer incidence in a large United States cohort. J Natl Cancer Inst. 2006;98:69–72.

    CAS  PubMed  Google Scholar 

  131. Friedman GD et al. Screening statins for possible carcinogenic risk: up to 9 years of follow-up of 361,859 recipients. Pharmacoepidemiol Drug Saf. 2008;17(1):27–36.

    PubMed  Google Scholar 

  132. Setoguchi S et al. Statins and the risk of lung, breast, and colorectal cancer in the elderly. Circulation. 2006;115(1):27–33.

    PubMed  Google Scholar 

  133. Singh H et al. Long-term use of statins and risk of colorectal cancer: a population-based study. Am J Gastroenterol. 2009;104:3015–23.

    CAS  PubMed  Google Scholar 

  134. Flick ED et al. Statin use and risk of colorectal cancer in a cohort of middle-aged men in the US: a prospective cohort study. Drugs. 2009;69(11):1445–57.

    CAS  PubMed  Google Scholar 

  135. Haukka J et al. Incidence of cancer and statin usage-record linkage study. International journal of cancer. J Int Cancer. 2010;126(1):279–84.

    CAS  Google Scholar 

  136. Jacobs EJ et al. Long-term use of cholesterol-lowering drugs and cancer incidence in a large United States cohort. Cancer Res. 2011;71(5):1763–71.

    CAS  PubMed  Google Scholar 

  137. Friis S et al. Cancer risk among statin users: a population-based cohort study. International journal of cancer. J Int Cancer. 2005;114(4):643–7.

    CAS  Google Scholar 

  138. Sacks FM, Pfeffer MA, Moye LA. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med. 1996;335:1001–9.

    CAS  PubMed  Google Scholar 

  139. Downs JR et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA J Am Med Assoc. 1998;279(20):1615–22.

    CAS  Google Scholar 

  140. L.S.G.L.-t.I.w.P.i.I. Disease. Long-term effectiveness and safety of pravastatin in 9014 patients with coronary heart disease and average cholesterol concentrations: the LIPID trial follow-up. Lancet. 2002;359(9315):1379–87.

    Google Scholar 

  141. Trial, A.O.a.C.f.t.A.C.R.G.T.A.a.L.-L.T.t.P.H.A. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA J Am Med Assoc. 2002;288(23):2998–3007.

    Google Scholar 

  142. Strandberg TE et al. Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S). Lancet. 2004;364(9436):771–7.

    CAS  PubMed  Google Scholar 

  143. Group HPSC. The effects of cholesterol lowering with simvastatin on cause-specific mortality and on cancer incidence in 20,536 high-risk people: a randomised placebo-controlled trial [ISRCTN48489393]. BMC Med. 2005;3:6.

    Google Scholar 

  144. Ford I et al. Long-term follow-up of the West of Scotland Coronary Prevention Study. N Engl J Med. 2007;357(15):1477–86.

    CAS  PubMed  Google Scholar 

  145. Hsia J et al. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol <50 mg/dl with rosuvastatin. J Am Coll Cardiol. 2011;57(16):1666–75.

    CAS  PubMed  Google Scholar 

  146. Baigent C et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Bonovas S et al. Statins and the risk of colorectal cancer: a meta-analysis of 18 studies involving more than 1.5 million patients. J Clin Oncol. 2007;25(23):3462–8.

    PubMed  Google Scholar 

  148. Bardou M, Barkun A, Martel M. Effect of statin therapy on colorectal cancer. Gut. 2010;59:1572–85.

    CAS  PubMed  Google Scholar 

  149. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov. 2007;6(7):541–55.

    CAS  PubMed  Google Scholar 

  150. Lee J et al. Effect of simvastatin plus cetuximab/irinotecan for KRAS mutant colorectal cancer and predictive value of the RAS signature for treatment response to cetuximab. Investig New Drugs. 2014;32(3):535–41. A phase II clinical trial of treatment with cetuximab and irinotecan in patients with KRAS mutant tumors showing an improvement in median PFS and median OS compared to historical controls.

    CAS  Google Scholar 

  151. Krens LL et al. Statin use is not associated with improved progression free survival in cetuximab treated KRAS mutant metastatic colorectal cancer patients: results from the CAIRO2 study. PLoS One. 2014;9(11):e112201. A retrospective analysis of the phase III CAIRO2 study showing no significant improvement in either median PFS or median OS in patients with KRAS mutant tumors who were on statin therapy in addition to chemotherapy.

    PubMed Central  PubMed  Google Scholar 

  152. Tomimoto A et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci. 2008;99(11):2136–41.

    CAS  PubMed  Google Scholar 

  153. Hosono K et al. Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol Carcinog. 2010;49(7):662–71.

    CAS  PubMed  Google Scholar 

  154. Vigneri P et al. Diabetes and cancer. Endocr Relat Cancer. 2009;16(4):1103–23.

    CAS  PubMed  Google Scholar 

  155. Giovannucci E et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33(7):1674–85.

    PubMed Central  PubMed  Google Scholar 

  156. Lee MS et al. Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals. BMC Cancer. 2011;11:20.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Libby G et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32(9):1620–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77.

    CAS  PubMed  Google Scholar 

  159. Garrett CR et al. Survival advantage observed with the use of metformin in patients with type II diabetes and colorectal cancer. Br J Cancer. 2012;106(8):1374–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Jiralerspong S et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27(20):3297–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Sehdev A. et al. Metformin for primary colorectal cancer prevention in patients with diabetes: A case-control study in a US population. Cancer. 2015;121(7):1071–8. A large case-control study in diabetic United States population showing reduced odds of developing CRC among metformin users as compared to non-users.

  162. Korsse SE, Peppelenbosch MP, van Veelen W. Targeting LKB1 signaling in cancer. Biochim Biophys Acta. 2012;1835(2):194–210.

    PubMed  Google Scholar 

  163. Hosono K et al. Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res (Phila). 2010;3(9):1077–83.

    CAS  Google Scholar 

  164. Pollak MN. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov. 2012;2(9):778–90.

    CAS  PubMed  Google Scholar 

  165. Jalving M et al. Metformin: taking away the candy for cancer? Eur J Cancer. 2010;46(13):2369–80.

    CAS  PubMed  Google Scholar 

  166. Pierotti MA. et al. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Oncogene. 2013;32(12):1475–87. An extensive review on the current evidence, mechanism of action and ongoing studies of metformin in prevention and treatment of cancer.

  167. Rattan R, Ali Fehmi R, Munkarah A. Metformin: an emerging new therapeutic option for targeting cancer stem cells and metastasis. J Oncol. 2012;2012:928127.

    PubMed Central  PubMed  Google Scholar 

  168. McQuaid KR, Laine L. Systematic review and meta-analysis of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials. Am J Med. 2006;119(8):624–38.

    CAS  PubMed  Google Scholar 

  169. Tougeron D et al. Aspirin and colorectal cancer: back to the future. Clin Cancer Res. 2014;20(5):1087–94. A review on current evidence in support of aspirin for CRC prevention especially highlighting the role of potential molecular markers (such as, PIK3CA) in individualizing aspirin therapy.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Kim Y, Je Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol. 2014;180(6):565–73. A pooled meta-analysis of seven propective cohort studies showing that a high dietary fiber intake may result in reduction of total mortality.

    PubMed  Google Scholar 

  171. Threapleton DE et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879.

    PubMed Central  PubMed  Google Scholar 

  172. Hull MA et al. A randomized controlled trial of eicosapentaenoic acid and/or aspirin for colorectal adenoma prevention during colonoscopic surveillance in the NHS Bowel Cancer Screening Programme (The seAFOod Polyp Prevention Trial): study protocol for a randomized controlled trial. Trials. 2013;14:237.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. U.S. Department of Health and Human Services. Office of Disease Prevention and Health Promotion. Healthy People 2020. Washington, DC. Available at: http://www.healthypeople.gov/2020/topics-objectives/topic/physical-activity. Accessed 27 March 2015.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Amikar Sehdev and Bert H. O’Neil declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Disclosure

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amikar Sehdev MD, MPH.

Additional information

This article is part of the Topical Collection on Lower Gastrointestinal Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehdev, A., O’Neil, B.H. The Role of Aspirin, Vitamin D, Exercise, Diet, Statins, and Metformin in the Prevention and Treatment of Colorectal Cancer. Curr. Treat. Options in Oncol. 16, 43 (2015). https://doi.org/10.1007/s11864-015-0359-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-015-0359-z

Keywords

Navigation