Skip to main content
Log in

Noether Theorem on Time Scales for Lagrangian Systems in Event Space

  • Mathematics
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The Noether symmetry and the conserved quantity on time scales in event space are studied in this paper. Firstly, the Lagrangian of parameter forms on time scales in event space are established. The Euler-Lagrange equations and the second Euler-Lagrange equations of variational calculus on time scales in event space are established. Secondly, based upon the invariance of the Hamilton action on time scales in event space under the infinitesimal transformations of a group, the Noether symmetry and the conserved quantity on time scales in event space are established. Finally, an example is given to illustrate the method and results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilger S. Ein maßkettenkalkiil mit Anwendung auf Zentrumsmannigfaltigkeiten [D]. Würzburg: Universität Würzburg, 1988.

    Google Scholar 

  2. Bohener M, Peterson A. Dynamic Equations on Time Scales: An Introduction with Applications [M]. Boston: Birkhäuser, 2001.

    Book  Google Scholar 

  3. Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales [M]. Boston: Birkhäuser, 2003.

    Book  Google Scholar 

  4. Hilscher R, Zeidan. Hamilton-Jacobi theory over time scales and applications to linear-quadratic problems [J]. Nonlinear Analysis, 2012, 75: 932–950.

    Article  Google Scholar 

  5. Malinowska A B, Ammi M R S. Noether’s theorem for control problems on time scales [J]. International Journal of Difference and Equation, 2014, 9: 87–100.

    Google Scholar 

  6. Martins N, Torres D F M. Noether’s symmetry theorem for nabla problems of the calculus of variations [J]. Applied Mathematics Letters, 2010, 23: 1432–1438.

    Article  Google Scholar 

  7. Atici F M, Biles D C, Lebedinsky A. An application of time scales to economics [J]. Mathematical and Computer Modelling, 2006, 43: 718–726.

    Article  Google Scholar 

  8. Guseinov G S, Kaymakcalan B. On a disconjugacy criterion for second order dynamic equations on time scales [J]. Journal of Computational and Applied Mathematics, 2002, 141: 187–196.

    Article  Google Scholar 

  9. Bohner M. Calculus of variations on time scales [J]. Dynamic Systems and Applications, 2004, 13: 339–349.

    Google Scholar 

  10. Bartosiewicz Z, Torres D F M. Noether’s theorem on time scales [J]. Journal of Mathematical Analysis and Applications, 2008, 342: 1220–1226.

    Article  Google Scholar 

  11. Bartosiewicz Z, Martins N, Torres D F M. The second Euler-Lagrange equation of variational calculus on time scales [J]. European Journal of Control, 2011, 17: 9–18.

    Article  Google Scholar 

  12. Cai P P, Fu J L, Guo Y X. Noether symmetries of the non-conservative and nonholonomic systems on time scales [J]. Science China, Physics, Mechanics & Astronomy, 2013, 56: 1017–1028.

    Article  Google Scholar 

  13. Peng K K, Luo Y P. Dynamics symmetries of Hamiltonian system on time scales [J]. Journal of Mathematical Physics, 2014, 55: 042702.

    Article  Google Scholar 

  14. Song C J, Zhang Y. Noether theorem for Birkhoffian systems on time scales [J]. Journal of Mathematical Physics, 2015, 56: 102701.

    Article  Google Scholar 

  15. Zhang Y. Noether theory for Hamiltonian system on time scales [J]. Chinese Quarterly of Mechanics, 2016, 37: 214–224 (Ch).

    Google Scholar 

  16. Zu Q H, Zhu J Q. Noether theorem for nonholonomic non-conservative mechanical systems in phase space on time scales [J]. Journal of Mathematical Physics, 2016, 57: 082701.

    Article  Google Scholar 

  17. Synge J L. Classical Dynamics [M]. Berlin: Springer-Verlag, 1960.

    Book  Google Scholar 

  18. Mei F X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999 (Ch).

    Google Scholar 

  19. Mei F X, Wu H B. Dynamics of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2009(Ch).

    Google Scholar 

  20. Zhang W W, Fang J H, Zhang B. Noether theorem of discrete Holonomic systems in event space [J]. Journal of Dynamics and Control, 2012, 10:117–120.

    CAS  Google Scholar 

  21. Xu R L, Fang J H, Zhang B. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass [J]. Acta Physica Sinica, 2013, 62: 154501 (Ch).

    Google Scholar 

  22. Zhang Y. Noether’s theory for Birkhoffian systems in the event space [J]. Acta Physica Sinica, 2008, 57: 2643–2648 (Ch).

    Google Scholar 

  23. Zhang Y. Parametric equations and its first integrals for Birkhoffian systems in the event space [J]. Acta Physica Sinica, 2008, 57: 2469–2653(Ch).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (11572212 and 11272227), the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province (KYZZ15_0349) and the Innovation Program of USTS (SKCX15_061)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhang, Y. Noether Theorem on Time Scales for Lagrangian Systems in Event Space. Wuhan Univ. J. Nat. Sci. 24, 295–304 (2019). https://doi.org/10.1007/s11859-019-1400-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-019-1400-z

Key words

CLC number

Navigation