Skip to main content
Log in

A method of estimating the eigenstates of density operator

  • Computer Science
  • Published:
Wuhan University Journal of Natural Sciences

Abstract

We describe a mathematical structure which corresponds to the eigenstates of a density operator. For an unknown density operator, we propose an estimating procedure which uses successive “yes/no” measurements to scan the Bloch sphere and approximately yields the eigenstates. This result is based on the quantum method of types and implies a relationship between the typical subspace and the Young frame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Harrow A W, Lloyd S. Universal quantum data compression via nondestructive tomography[J]. Physical Review A, 2006, 73(3): 032336.

    Article  Google Scholar 

  2. James D F V, Kwiat P G, Munro W J, et al. Measurement of qubits [J]. Physical Review A, 2001, 64(5): 052312.

    Article  Google Scholar 

  3. Adamson R B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases [J]. Physical Review Letters, 2010, 105(3): 030406.

    Article  CAS  PubMed  Google Scholar 

  4. Lvovsky A I, Raymer M G. Continuous-variable optical quantum-state tomography [J]. Reviews of Modern Physics, 2009, 81(1): 299.

    Article  Google Scholar 

  5. Gross D, Liu Y K, Flammia S T, et al. Quantum state tomography via compressed sensing [J]. Physical Review Letters, 2010, 105(15): 150401.

    Article  PubMed  Google Scholar 

  6. Christandl M, Renner R. Reliable quantum state tomography [J]. Physical Review Letters, 2012, 109(12): 120403.

    Article  PubMed  Google Scholar 

  7. Vidal G, Latorre J I, Pascual P, et al. Optimal minimal measurements of mixed states [J]. Physical Review A, 1999, 60(1): 126.

    Article  CAS  Google Scholar 

  8. Keyl M. Quantum state estimation and large deviations [J]. Reviews in Mathematical Physics, 2006, 18(1): 19–60.

    Article  Google Scholar 

  9. Bagan E, Ballester M A, Gill R D, et al. Optimal full estimation of qubit mixed states [J]. Physical Review A, 2006, 73(3): 032301.

    Article  Google Scholar 

  10. Schumacher B. Quantum coding [J]. Physical Review A, 1995, 51: 2738.

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information [M]. Cambridge: Cambridge University Press, 2010.

    Book  Google Scholar 

  12. Cover T M, Thomas J A. Elements of Information Theory [M]. New York: John Wiley & Sons, 2012.

    Google Scholar 

  13. Csiszar I, Körner J. Information Theory: Coding Theorems for Discrete Memoryless Systems [M]. Cambridge: Cambridge University Press, 2011.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao Jingliang.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China(61271174, 61372076, 61301178)

Biography: GAO Jingliang , male, Ph.D. candidate, research direction: quantum information theory, quantum cryptography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jingliang, G. A method of estimating the eigenstates of density operator. Wuhan Univ. J. Nat. Sci. 20, 386–390 (2015). https://doi.org/10.1007/s11859-015-1110-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-015-1110-0

Keywords

CLC number

Navigation