Skip to main content
Log in

The coding power of a product of partitions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given two combinatorial notions P0 and P1, can we encode P0 via P1? In this paper we address the question where P0 is 3-coloring of integers and P1 is a product of finitely many 2-colorings of integers.

We firstly reduce the question to a lemma which asserts that certain Π 01 -classes of colorings admit two members violating a particular combinatorial constraint. Then we digress to see how complex the class must be to maintain the constraint.

We weaken the two members in the lemma in a certain way to address a question of Cholak, Dzhafarov, Hirschfeldt and Patey, concerning a sort of Weihrauch degree of stable Ramsey’s theorem for pairs. It turns out the resulted strengthening of the lemma is a basis theorem for a Π 01 -class with additional constraints. We look at several such variants of basis theorem, among ahich some are unknown. We end up by introducing some results and questions concerning a product of infinitely many colorings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Cholak, D. D Dzhafarov, D. R. Hirschfeldt and L. Patey, Some results concerning the SRT 22 vs. COH problem, Computability 9 (2020), 193–217.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. A. Cholak, C. G. Jockusch and T. A. Slaman, On the strength of Ramsey’s theorem for pairs, Journal of Symbolic Logic 66 (2001), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. G. Downey, N. Greenberg, C. G. Jockusch and K. G. Milans, Binary subtrees with few labeled paths, Combinatorica 31 (2011), 285–303.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Dzhafarov, L. Patey, R. Solomon and L. Westrick, Ramsey’s theorem for singletons and strong computable reducibility, Proceedings of the American Mathematical Society 145 (2017), 1343–1355.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. D. Dzhafarov and C. G. Jockusch, Ramsey’s theorem and cone avoidance, Journal of Symbolic Logic 74 (2009), 557–578.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Greenberg and J. S. Miller, Diagonally non-recursive functions and effective Hausdorff dimension, Bulletin of the London Mathematical Society 43 (2011), 636–654.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. R. Hirschfeldt, Slicing the Truth, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 28, World Scientific, Hackensack, NJ, 2015.

    Google Scholar 

  8. M. Khan and J. S. Miller, Forcing with bushy trees, Bulletin of Symbolic Logic 23 (2017), 160–180.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Kjos-Hanssen, Infinite subsets of random sets of integers, Mathematics Research Letters 16 (2009), 103–110.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Kjos-Hanssen and L. Liu, Extracting randomness within a subset is hard, European Journal of Mathematics 6 (2020), 1438–1451.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Kumabe and A. E. M. Lewis, A fixed point free minimal degree, Journal of the London Mathematical Society 80 (2009), 785–797.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Liu, RT 22 does not imply WKL0, Journal of Symbolic Logic 77 (2012), 609–620.

    Article  MathSciNet  Google Scholar 

  13. L. Liu, Avoid Schnorr randomness, https://arxiv.org/abs/1912.09052.

  14. B. Monin and L. Patey, The weakness of the pigeonhole principle under hyperarithmetical reductions, Journal of Mathematical Logic 21 (2021), Article no. 2150013.

  15. B. Monin and L. Patey, Π 01 -encodability and omniscient reductions, Notre Dame Journal of Formal Logic 60 (2019), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Seetapun and T. A. Slaman, On the strength of Ramsey’s theorem, Notre Dame Journal of Formal Logic 36 (1995), 570–582.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009.

    Book  MATH  Google Scholar 

  18. R. M. Solovay, Hyperarithmetically encodable sets, Transactions of the American Mathematical Society 239 (1978), 99–122.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Wang, Cohesive sets and rainbows, Annals of Pure and Applied Logic 165 (2014), 389–408

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L. The coding power of a product of partitions. Isr. J. Math. 255, 645–683 (2023). https://doi.org/10.1007/s11856-023-2475-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2475-y

Navigation