Skip to main content
Log in

Mori dream K3 surfaces of Picard number four: projective models and Cox rings

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the geometry of the 14 families of K3 surfaces of Picard number four with finite automorphism group, whose Neron—Severi lattices have been classified by È. B. Vinberg. We provide projective models, we identify the degrees of a generating set of the Cox ring and in some cases we prove the unirationality of the associated moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Artebani, C. Correa Deisler and A. Laface, Cox rings of K3 surfaces of Picard number three, Journal of Algebra 565 (2021), 598–626.

    Article  MathSciNet  Google Scholar 

  2. I. Arzhantsev, U. Derenthal, J. Hausen and A. Laface, Cox Rings, Cambridge Studies in Advanced Mathematics, Vol. 144, Cambridge University Press, Cambridge, 2015.

    Google Scholar 

  3. M. Artebani, J. Hausen and A. Laface, On Cox rings of K3 surfaces, Compositio Mathematica 146 (2010), 964–998.

    Article  MathSciNet  Google Scholar 

  4. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, Journal of Symbolic Computation 24 (1997), 235–265.

    Article  MathSciNet  Google Scholar 

  5. R. Bottinelli, Vinberg’s algorithm over number fields, https://github.com/bottine/VinbergsAlgorithmNF.

  6. N. Bogachev and A. Perepechko, Vinberg’s algorithm, https://github.com/aperep/vinal.

  7. N. Bogachev and A. Perepechko, Vinberg’s algorithm for hyperbolic lattices, Mathematical Notes 103 (2018), 836–840.

    Article  MathSciNet  Google Scholar 

  8. R. Guglielmetti, AlVin: a C++ implementation of the Vinberg algorithm for diagonal quadratic forms, https://github.com/rgugliel/AlVin.

  9. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer, New York, 1977.

    Google Scholar 

  10. D. Huybrechts, Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics, Vol. 158, Cambridge University Press, Cambridge, 2016.

    Book  Google Scholar 

  11. E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Graduate Texts in Mathematics, Vol. 227, Springer, New York, 2000.

    Google Scholar 

  12. V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by 2-reflections, Dokladi Akademii Nauk SSSR 248 (1979), 1307–1309.

    MathSciNet  Google Scholar 

  13. V. V. Nikulin, K3 surfaces with a finite group of automorphisms and a Picard group of rank three, Trudy Matematicheskogo Instituta imeni V. A. Steklova 165 (1984), 119–142.

    MathSciNet  Google Scholar 

  14. V. V. Nikulin, A remark on algebraic surfaces with polyhedral Mori cone, Nagoya Mathematical Journal 157 (2000), 73–92.

    Article  MathSciNet  Google Scholar 

  15. J. C. Ottem, Cox rings of K3 surfaces with Picard number 2, Journal of Pure and Applied Algebra 217 (2013), 709–715.

    Article  MathSciNet  Google Scholar 

  16. I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type K3, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 35 (1971), 530–572.

    MathSciNet  Google Scholar 

  17. X. Roulleau, An atlas of K3 surfaces with finite automorphism group, Épijournal de Géométrie Algébrique 6 (2022), Article no. 19.

  18. B. Saint-Donat, Projective models of K — 3 surfaces, American Journal of Mathematics 96 (1974), 602–639.

    Article  MathSciNet  Google Scholar 

  19. A. M. Vermeulen, Weierstrass points of weight two on curves of genus three, Dissertation, Universiteit van Amsterdam, Amsterdam, 1983.

    Google Scholar 

  20. È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiľ spaces, Matematicheskii Sbornik 72, 471–488.

  21. È. B. Vinberg, The groups of units of certain quadratic forms, Matematicheskii Sbornik 87, 18–36.

  22. E. B. Vinberg, The two most algebraic K3 surfaces, Mathematische Annalen 265, 1–21.

  23. È. B. Vinberg, Some arithmetical discrete groups in Lobačevskiľ spaces, in Discrete Subgroups of Lie Groups and Applications to Moduli (Internat. Colloq., Bombay, 1973), Oxford University Press, Bombay, 1975, pp. 323–348.

    Google Scholar 

  24. È. B. Vinberg, Classification of 2-refiective hyperbolic lattices of rank 4, Trudy Moskovskogo Matematicheskogo Obshchestva 68 (2007), 44–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Roulleau.

Additional information

The authors have been partially supported by Proyecto FONDECYT Regular N. 1160897 and N. 1211708 and by Proyecto Anillo ACT 1415 PIA CONICYT (first and second author). The second author has been supported by CONICYT PCHA/DoctoradoNacional/2012/21120687.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artebani, M., Deisler, C.C. & Roulleau, X. Mori dream K3 surfaces of Picard number four: projective models and Cox rings. Isr. J. Math. 258, 81–135 (2023). https://doi.org/10.1007/s11856-023-2469-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2469-9

Navigation