Skip to main content
Log in

No hyperbolic sets in J for infinitely renormalizable quadratic polynomials

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let f be an infinitely renormalizable quadratic polynomial and J be the intersection of forward orbits of “small” Julia sets of its simple renormalizations. We prove that J contains no hyperbolic sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Benini and M. Lyubich, Repelling periodic points and landing rays for post-singularly bounded exponential maps, Université de Grenoble. Annales de l’Institut Fourier 64 (2014), 1493–1520.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil’s staircase, Mathematical Proceedings of the Cambridge Philosophical Society 115 (1994), 451–481.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Carleson and T. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer, New York, 1993

    Book  MATH  Google Scholar 

  4. D. Cheraghi, Typical orbits of quadratic polynomials with a neutral fixed point: Brjuno type, Communications in Mathematical Physics 322 (2013), 999–1035.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Cheraghi and M. Shishikura, Satellite renormalization of quadratic polynomials, https://arxiv.org/abs/1509.07843.

  6. A. Douady, Algorithms for computing angles in the Mandelbrot set, in Chaotic Dynamics and Fractals, Notes and Reports in Mathematics in Science and Engineering, Vol. 2, Academic Press, Orlando, FL, 1986, pp. 155–168.

    Chapter  Google Scholar 

  7. A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Annales Scientifiques de l’École Normale Supérieure 18 (1985), 287–343.

    Article  MathSciNet  MATH  Google Scholar 

  8. W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, American Mathematical Society Colloquium Publications, Vol. 36, American Mathematical Society, Providence, RI, 1955.

    MATH  Google Scholar 

  9. J. Graczyk and G. Świątek, Polynomial-like property for real polynomials, Topology Proceedings 21 (1996), 33–122.

    MathSciNet  MATH  Google Scholar 

  10. J. H. Hubbard, Local connectivity of Julia sets and bifurcation coci: three theorems of J.-C. Yoccoz, in Topological Methods in Modern Mathematics, Publish or Perish, Houston, TX, 1993, pp. 467–511.

    Google Scholar 

  11. J. Kahn, A priori bounds for some infinitely renormalizable quadratics: I. Bounded primitive combinatorics, https://arxiv.org/abs/math/0609045.

  12. J. Kahn and M. Lyubich, A priori bounds for some infinitely renormalizable quadratics. II. Decorations, Annales Scientifiques de l’École Normale Supérieure 41 (2008), 57–84.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Kahn and M. Lyubich, A priori bounds for some infinitely renormalizable quadratics. III. Molecules, in Complex Dynamics, A K Peters, Wellesley, MA, 2009, pp. 229–254.

    Chapter  Google Scholar 

  14. J. Kiwi, Rational laminations of complex polynomials, in Laminations and Foliations in Dynamics, Geometry and Topology (Stony Brook, NY, 1998), Contemporary Mathematics, Vol. 269, American Mathematical Society, Providence, RI, 2001, pp. 111–154.

    Chapter  Google Scholar 

  15. O. Kozlovski, W. Shen and S. Van Strien, Rigidity for real polynomials, Annals of Mathematics 165 (2007), 749–841.

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Kozlovski, W. Shen and S. Van Strien, Density of hyperbolicity in dimension one, Annals of Mathematics 166 (2007), 145–182.

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Levin, On backward stability of holomorphic dynamical systems, Fundamenta Mathematicae 158 (1998), 97–107.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Levin, Multipliers of periodic orbits of quadratic polynomials and the parameter plane, Israel Journal of Mathematics 170 (2009), 285–315.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Levin, Rigidity and non-local connectivity of Julia sets of some quadratic polynomials, Communications in Mathematical Physics 304 (2011), 295–328.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Levin, Addendum to: Rigidity and non-local connectivity of Julia sets of some quadratic polynomials, Communications in Mathematical Physics 325 (2014), 1171–1178.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Levin, Rays to renormalizations, Bulletin of the Polish Academy of Sciences. Mathematics 68 (2020), 133–149.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Levin, F. Przytycki and W. Shen, The Lyapunov exponent of holomorphic maps, Inventiones Mathematicae 205 (2016), 363–382.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Levin and S. Van Strien, Local connectivity of the Julia set of real polynomials, Annals of Mathematics 147 (1998), 471–541.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Lyubich and M. Yampolsky, Dynamics of quadratic polynomials: complex bounds for real maps, Université de Grenoble. Annales de l’Institut Fourier 47 (1997), 1219–1255.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Mane, On a theorem of Fatou, Boletim da Sociedade Brasileira de Matemática 24 (1993), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. McMullen, Complex Dynamics and Renormalization, Annals of Mathematical Studies, Vol. 135, Princeton University Press, Princeton, NJ, 1994.

    MATH  Google Scholar 

  27. J. Milnor, Local connectivity of Julia sets: expository lectures, in The Mandelbrot Set, Theme and Variations, London Mathematical Society Lecture Note Series, Vol. 274, Cambridge University Press, Cambridge, 2000, pp. 67–116.

    Chapter  Google Scholar 

  28. J. Milnor, Periodic orbits, external rays and the Mandelbrot set: an expository account, Astérisque 261 (2000), 277–331.

    MathSciNet  MATH  Google Scholar 

  29. F. Przytycki, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fundamenta Mathematicae 144 (1994), 259–278

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, Vol. 371, Cambridge University Press, Cambridge, 2010.

    Book  MATH  Google Scholar 

  31. M. Rees, One hundred years of complex dynamics, Proceedings of the Royal Society A 472 (2016), Article no. 20150453.

  32. D. E. K. Sorensen, Infinitely renormalizable quadratic polynomials with non-locally connected Julia set, Journal of Geometric Analysis 10 (2000), 169–208.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Sullivan, Bounds, quadratic differentials and renormalization conjectures, in Mathematics into the Twenty-First Century, American Mathematical Society Centennial Publications, Vol. 2, American Mathematical Society, Providence, RI, 1991, pp. 417–466.

    Google Scholar 

  34. W. Thurston, On the Combinatorics of Iterated Rational Maps, Princeton University Press, 1985.

  35. J.-Ch. Yoccoz, Recent developments in dynamics, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 246–265.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genadi Levin.

Additional information

Dedicated to Professor Benjamin Weiss on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, G., Przytycki, F. No hyperbolic sets in J for infinitely renormalizable quadratic polynomials. Isr. J. Math. 251, 635–656 (2022). https://doi.org/10.1007/s11856-022-2443-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2443-y

Navigation