Skip to main content
Log in

The multiset partition algebra

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce the multiset partition algebra \({\cal M}{{\cal P}_k}\left(\xi \right)\) over the polynomial ring F[ξ], where F is a field of characteristic 0 and k is a positive integer. When ξ is specialized to a positive integer n, we establish the Schur—Weyl duality between the actions of resulting algebra \({\cal M}{{\cal P}_k}\left(n \right)\) and the symmetric group Sn on Symk(Fn). The construction of \({\cal M}{{\cal P}_k}\left(\xi \right)\) generalizes to any vector λ of non-negative integers yielding the algebra \({\cal M}{{\cal P}_\lambda}\left(\xi \right)\) over F[ξ] so that there is Schur—Weyl duality between the actions of \({\cal M}{{\cal P}_\lambda}\left(n \right)\) and Sn on Symλ(Fn). We find the generating function for the multiplicity of each irreducible representation of Sn in Symλ(Fn), as λ varies, in terms of a plethysm of Schur functions. As consequences we obtain an indexing set for the irreducible representations of \({\cal M}{{\cal P}_k}\left(n \right)\) and the generating function for the multiplicity of an irreducible polynomial representation of GLn(F) when restricted to Sn. We show that \({\cal M}{{\cal P}_\lambda}\left(\xi \right)\) embeds inside the partition algebra \({{\cal P}_{\left| \lambda \right|}}\left(\xi \right)\). Using this embedding, we show that the multiset partition algebras are generically semisimple over F. Also, for the specialization of ξ at v in F, we prove that \({\cal M}{{\cal P}_\lambda}\left(v \right)\) is a cellular algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Akin, On complexes relating the Jacobi—Trudi identity with the Bernstein—Gelfand—Gelfand resolution. II, Journal of Algebra 152 (1992), 417–426

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Benkart and T. Halverson, Partition algebras and the invariant theory of the symmetric group, in Recent Trends in Algebraic Combinatorics, Association for Women in Mathematics Series, Vol. 16, Springer, Cham, 2019, pp. 1–41.

    Google Scholar 

  3. M. Bloss, G-colored partition algebras as centralizer algebras of wreath products, Journal of Algebra 265 (2003), 690–710.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Brauer, On algebras which are connected with the semisimple continuous groups, Annals of Mathematics 38 (1937), 857–872.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Colmenarejo, R. Orellana, F. Saliola, A. Schilling and M. Zabrocki, An insertion algorithm on multiset partitions with applications to diagram algebras, Journal of Algebra 557 (2020), 97–128.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. J. Graham and G. I. Lehrer, Cellular algebras, Inventiones Mathematicae 123 (1996), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Halverson and A. Ram, Partition algebras, European Journal of Combinatorics 26 (2005), 869–921.

    Article  MathSciNet  MATH  Google Scholar 

  8. N. Harman, Representations of monomial matrices and restriction from GLnto Sn, https://arxiv.org/abs/1804.04702.

  9. V. F. R. Jones, The Potts model and the symmetric group, in Subfactors (Kyuzeso, 1993), World Scientific, River Edge, NJ, 1994, pp. 259–267.

    Google Scholar 

  10. S. König and C. Xi, On the structure of cellular algebras, in Algebras and Modules, II (Geiranger, 1996), CMS Conference Proceedings, Vol. 24, American Mathematical Society, Providence, RI, 1998, pp. 365–386.

    Google Scholar 

  11. D. E. Littlewood, Products and plethysms of characters with orthogonal, symplectic and symmetric groups, Canadian Journal of Mathematics 10 (1958), 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, New York, 2015.

    MATH  Google Scholar 

  13. P. Martin, Potts Models and Related Problems in Statistical Mechanics, Series on Advances in Statistical Mechanics, Vol. 5, World Scientific, Teaneck, NJ, 1991.

    Book  MATH  Google Scholar 

  14. P. Martin, Temperley—Lieb algebras for nonplanar statistical mechanics—the partition algebra construction, Journal of Knot Theory and its Ramifications 3 (1994), 51–82.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Martin, On diagram categories, representation theory and statistical mechanics in Noncommutative Rings, Group Rings, Diagram Algebras, and Their Applications, Contemporary Mathematics, Vol. 456, American Mathematical Society, Providence, RI, 2008, pp. 99–136.

    Chapter  Google Scholar 

  16. P. Martin and H. Saleur, Algebras in higher-dimensional statistical mechanics—the exceptional partition (mean field) algebras, Letters in Mathematical Physics 30 (1994), 179–185

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Mishra and S. Srivastava, On representation theory of partition algebras for complex reflection groups, Algebraic Combinatorics 3 (2020), 389–432.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Orellana and M. Zabrocki, Symmetric group characters as symmetric functions, Advances in Mathematics 390 (2021), Article no. 107943.

  19. R. Orellana and M. Zabrocki, Howe duality of the symmetric group and a multiset partition algebra, Communications in Algebra, to appear, https://arxiv.org/abs/2007.07370.

  20. A. Prasad, Representation Theory, Cambridge Studies in Advanced Mathematics, Vol. 147, Cambridge University Press, Delhi, 2015.

    Book  MATH  Google Scholar 

  21. I. Schur, Über die rationalen Darstellungen der allgemeinen linearen Gruppe, Sitz bericht Akademie der Wissenschaften zu Berlin (1927), 100–124.

  22. R. P. Stanley, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.

    Book  MATH  Google Scholar 

  23. H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, NJ, 1939.

    MATH  Google Scholar 

  24. C. Xi, Partition algebras are cellular, Compositio Mathematica 119 (1999), 99–109.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Young, On quantitative substitutional analysis (Second paper), Proceedings of the London Mathematical Society 34 (1902), 361–397.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Amritanshu Prasad for his consistent guidance and fruitful advice. The authors also thank Nate Harman and Mike Zabrocki for their valuable suggestions on this manuscript. We thank the referee for pointing out a few crucial errors in the manuscript and giving us the opportunity to address them. SS was supported by a national postdoctoral fellowship (PDF/2017/000861) of the Department of Science & Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shraddha Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, S., Paul, D. & Srivastava, S. The multiset partition algebra. Isr. J. Math. 255, 453–500 (2023). https://doi.org/10.1007/s11856-022-2410-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2410-7

Navigation