Skip to main content
Log in

Multiple genericity: a new transfinite hierarchy of genericity notions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a transfinite hierarchy of genericity notions stronger than 1-genericity and weaker than 2-genericity. There are many connections with Downey and Greenberg’s hierarchy of totally α-c.a. degrees [8]. We give several theorems concerning the strength required to compute multiply generic degrees, and show that some of the levels in the hierarchy can be separated, and that these separations can be witnessed by a \(\Delta _2^0\) degree. Finally, we consider downward density for these classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Barmpalias, A. Day and A. Lewis-Pye, The typical Turing degree, Proceedings of the London Mathematical Society, 109 (2014), 1–39.

    Article  MathSciNet  Google Scholar 

  2. G. Barmpalias and A. Lewis-Pye, The information content of typical reals, in Turing’s Revolution, Birkhäuser/Springer, Cham, 2015, pp. 207–224.

    MATH  Google Scholar 

  3. P. Brodhead, R. Downey and K. M. Ng, Bounded randomness, in Computation, Physics and Beyond, Lecture Notes in Computer Science, Vol. 7160, Springer, Heidelberg, 2012, pp. 59–70.

    Chapter  Google Scholar 

  4. C. T Chong and R. Downey, Minimal degrees recursive in 1-generic degrees, Annals of Pure and Applied Logic 48 (1990), 215–225.

    Article  MathSciNet  Google Scholar 

  5. C. T. Chong and C. Jockusch, Minimal degrees and 1-generic sets below 0′ in Computation and Proof Theory, Lecture Notes in Mathematics, Vol 1104, Springer, Berlin, 1984, pp. 63–77.

    Google Scholar 

  6. R. Downey and A. Gale, On genericity and Ershov’s hierarchy, Mathematical Logic Quarterly 47 (2001), 161–182.

    Article  MathSciNet  Google Scholar 

  7. R. Downey and N. Greenberg, Pseudo-jump inversion, upper cone avoidance, and strong jump-traceability, Advances in Mathematics 237 (2013), 252–285.

    Article  MathSciNet  Google Scholar 

  8. R. Downey and N. Greenberg, A Hierarchy of Turing Degrees, Annals of Mathematics Studies, Vol. 206, Princeton University Press, Princeton, NJ, 2020.

    Book  Google Scholar 

  9. R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Theory and Applications of Computability. Springer, New York, 2010.

    Book  Google Scholar 

  10. R. Downey, D. Hirschfeldt, A. Nies and F. Stephan, Trivial reals, in Proceedings of the 7th and 8th Asian Logic Conferences, Singapore University Press, Singapore, 2003, pp. 103–131.

    MATH  Google Scholar 

  11. R. Downey, C. Jockusch and M. Stob, Array nonrecursive sets and multiple permitting arguments, in Recursion Theory Week (Oberwolfach, 1989), Lecture Notes in Mathematics, Vol. 1432, Springer, Berlin, 1990, pp. 141–173.

    Chapter  Google Scholar 

  12. R. Downey, C. Jockusch and M. Stob, Array nonrecursive sets and genericity, in Computability, Enumerability, Unsolvability, London Mathematical Society Lecture Note Seires, Vol. 224, Cambridge University Press, Cambridge, 1996, pp. 93–105.

    Chapter  Google Scholar 

  13. R. Downey and S. Nandakumar, A weakly-2-generic which bounds a minimal degree, Journal of Symbolic Logic 84 (2019), 1326–1347.

    Article  MathSciNet  Google Scholar 

  14. C. Haught, The degrees below a 1-generic degree 0′, Journal of Symbolic Logic 51 (1986), 770–777.

    Article  MathSciNet  Google Scholar 

  15. C. G. Jockusch, Jr., Degrees of generic sets, In Recursion Theory: its Generalisations and Applications, London Mathematical Society Lecture Note Series, Vol. 45, Cambridge University Press, Cambridge, 1980, pp. 110–139.

    Chapter  Google Scholar 

  16. C. G. Jockusch, Jr. and D. Posner, Double jumps of minimal degrees, Journal of Symbolic Logic 43 (1978), 715–724.

    Article  MathSciNet  Google Scholar 

  17. M. Kumabe, A 1-generic degree which bounds a minimal degree, Journal of Symbolic Logic 55 (1990), 733–743.

    Article  MathSciNet  Google Scholar 

  18. S. Kurtz, Randomness and genericity in the degrees of unsolvability, PhD. thesis, University of Illinois, Urbana-Champaign, 1981.

    Google Scholar 

  19. S. Kurtz, Notions of weak genericity, Journal of Symbolic Logic 48 (1983), 764–770.

    Article  MathSciNet  Google Scholar 

  20. M. McInerney, Topics in algorithmic randomness and computability theory, PhD. thesis, Victoria University of Wellington, 2016.

  21. M. McInerney and K. M. Ng, Separating weak α-change and α-change genericity, under review.

  22. A. Nies, Lowness properties and randomness, Advances in Mathematics 197 (2005), 274–305.

    Article  MathSciNet  Google Scholar 

  23. A. Nies, Computability and Randomness, Oxford Logic Studies, Vol. 51, Oxford University Press, Oxford, 2009.

    Book  Google Scholar 

  24. B. Schaeffer, Dynamic notions of genericity and array noncomputability, Annals of Pure and Applied Logic 96 (1998), 37–69.

    Article  MathSciNet  Google Scholar 

  25. R. A. Shore and T. A. Slaman, Defining the Turing jump, Mathematical Research Letters 6 (1999), 711–722.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McInerney.

Additional information

Both authors are partially supported by MOE2015-T2-2-055.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McInerney, M., Ng, K.M. Multiple genericity: a new transfinite hierarchy of genericity notions. Isr. J. Math. 250, 1–51 (2022). https://doi.org/10.1007/s11856-022-2331-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2331-5

Navigation