Skip to main content
Log in

Invariant Brauer group of an abelian variety

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study a new object that can be attached to an abelian variety or a complex torus: the invariant Brauer group, as recently defined by Yang Cao. Over the field of complex numbers this is an elementary abelian 2-group with an explicit upper bound on the rank. We exhibit many cases in which the invariant Brauer group is zero, and construct complex abelian varieties in every dimension starting with 2, both simple and non-simple, with invariant Brauer group of order 2. We also address the situation in finite characteristic and over non-closed fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Berkovich, The Brauer group of abelian varieties, Funkcional’nyi Analiz i ego Priloženija 6 (1972), 10–15; English translation in Functional Analysis and its Applications 6 (1972), 180–184.

    MathSciNet  Google Scholar 

  2. Y. Cao, Approximation forte pour les variétés avec une action d’un groupe linéaire, Compositio Mathematica 154 (2018), 773–819.

    Article  MathSciNet  Google Scholar 

  3. Y. Cao, Sous-groupe de Brauer invariant et obstruction de descente itérée, Algebra & Number Theory 14 (2020), 2151–2183.

    Article  MathSciNet  Google Scholar 

  4. Y. Cao, Sous-groupe de Brauer invariant pour un groupe algébrique connexe quelconque, Université de Grenoble. Annales de l’Institut Fourier, to appear, https://arxiv.org/abs/1808.06951.

  5. Ch.-L. Chai, Hecke orbits on Siegel modular varieties, in Geometric Methods in Algebra and Number Theory, Progress in Mathematics, Vol. 235, Birkhäuser, Boston, MA, 2005, pp. 71–107.

    Chapter  Google Scholar 

  6. Ch.-L. Chai and F. Oort, Moduli of abelian varieties and p-divisible groups. in Arithmetic Geometry, Clay Mathematics Institute Proceedings Series, Vol. 8, American Mathematical Society, Providence, RI, 2009, pp. 441–536.

    Google Scholar 

  7. L. Clozel, H. Oh and E. Ullmo, Hecke operators and equidistribution of Hecke points, Inventiones Mathematicae 144 (2001), 327–351.

    Article  MathSciNet  Google Scholar 

  8. J.-L. Colliot-Thelene and A. N. Skorobogatov, The Brauer—Grothendieck Group, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 71, Springer, Cham, 2021.

    Book  Google Scholar 

  9. B. Conrad, Chow’s K/k-image and K/k-trace, and the Lang—Néron theorem, L’Enseignement Mathématique 52 (2006), 37–108.

    MathSciNet  MATH  Google Scholar 

  10. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, Vol. 11, Interscience, New York-London, 1966.

    MATH  Google Scholar 

  11. B. Edixhoven, G. van der Geer and B. Moonen, Abelian Varieties, preliminary version, https://www.math.ru.nl/~bmoonen/research.html.

  12. A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Studies in Advanced Mathematics, Vol. 27, Cambridge University Press, Cambridge, 1991.

    Book  Google Scholar 

  13. P. Gabriel, Généralités sur les groupes algébriques, in SGA III. Schémas en groupes, Lecture Notes in Mathematics, Vols. 151, 152, 153, Springer, Berlin-New York, 1970, 287–317.

    Google Scholar 

  14. A. Grothendieck, Le groupe de Brauer, I, II, III, in Dix exposés sur la cohomologie des schéemas, Advanced Studies in pure Mathematics, Vol. 3, North-Holland, Amsterdam, 1968, pp. 46–188.

    Google Scholar 

  15. G. R. Kempf, Complex Abelian Varieties and Theta Functions. Universitext, Springer, Berlin, 1991.

    Book  Google Scholar 

  16. S. L. Kleiman, The Picard scheme, in Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, Vol. 123, American Mathematical Society, Providence, RI, 2005, 235–321.

    Google Scholar 

  17. S. Lang, Complex Multiplication, Grundlehren der Mathematischen Wissenschaften, Vol. 255, Springer, New York, 1983.

    Book  Google Scholar 

  18. K.-Zh. Li and F. Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics, Vol. 1680, Springer, Berlin, 1998.

    Book  Google Scholar 

  19. J. S. Milne, Étale Cohomology, Princeton Mathematical Series, Vol. 33, Princeton University Press, Princeton, NJ, 1980.

    MATH  Google Scholar 

  20. D. Mumford, Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, Vol. 5, Oxford University Press, London, 1974.

    MATH  Google Scholar 

  21. F. Oort, Endomorphism algebras of abelian varieties, in Algebraic Geometry and Commutative Algebra. Vol. II, Konokuniya, Tokyo, 1988, pp. 469–502.

    MATH  Google Scholar 

  22. F. Oort and Yu. G. Zarhin, Endomorphism algebras of complex tori, Mathematische Annalen 303 (1995), 11–29.

    Article  MathSciNet  Google Scholar 

  23. M. Orr, A. N. Skorobogatov and Yu. G. Zarhin, On uniformity conjectures for abelian varieties and K3 surfaces, American Journal of Mathematics 143 (2021), 1665–1702.

    Article  MathSciNet  Google Scholar 

  24. V. P. Platonov and A. S. Rapinchuk, in Algebraic Groups and Number Theory, Nauka, Moscow, 1991; English translation: Pure and Applied Mathematics, Vol. 139, Academic Press, Boston, MA, 1994.

    MATH  Google Scholar 

  25. C. Schoen, Produkte Abelscher Varietäten und Moduln über Ordnungen, Journal für die reine und angewandtte Mathematik 429 (1992), 115–123.

    MATH  Google Scholar 

  26. S. Schröer, Topological methods for complex-analytic Brauer groups, Topology 44 (2005), 875–894.

    Article  MathSciNet  Google Scholar 

  27. J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, Vol. 42, Springer, New York-Heidelberg, 1977.

    Book  Google Scholar 

  28. G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Annals of Mathematics 78 (1963), 149–192.

    Article  MathSciNet  Google Scholar 

  29. A. N. Skorobogatov and Yu. G. Zarhin, A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, Journal of Algebraic Geometry 17 (2008), 481–502.

    Article  MathSciNet  Google Scholar 

  30. A. N. Skorobogatov and Yu. G. Zarhin, The Brauer group and the Brauer—Manin set of products of varieties, Journal of the European Mathematical Society 16 (2014), 749–769.

    Article  MathSciNet  Google Scholar 

  31. M. Stoll, Finite descent obstructions and rational points on curves, Algebra & Number Theory 1 (2007), 349–391.

    Article  MathSciNet  Google Scholar 

  32. H. P. F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory. London Mathematical Society Student Texts, Vol. 50, Cambridge University Press, Cambridge, 2001.

    Book  Google Scholar 

  33. J. Tate, Endomorphisms of abelian varieties over finite fields, Inventiones mathematicae 2 (1966), 134–144.

    Article  MathSciNet  Google Scholar 

  34. Yu. G. Zarhin, Actions of semisimple Lie groups and orbits of Cartan subgroups, Archiv der Mathematik 56 (1991), 491–496.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The fourth named author (Y.Z.) was partially supported by Simons Foundation Collaboration grant #585711. Part of this work was done during his stay in December 2019 and January 2020 at the Weizmann Institute of Science, Department of Mathematics, whose hospitality and support are gratefully acknowledged.

The authors are grateful to the referee for the careful reading of the paper and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei N. Skorobogatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orr, M., Skorobogatov, A.N., Valloni, D. et al. Invariant Brauer group of an abelian variety. Isr. J. Math. 249, 695–733 (2022). https://doi.org/10.1007/s11856-022-2323-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2323-5

Navigation