Skip to main content
Log in

On the Szegő—Kolmogorov prediction theorem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The classical Szegő—Kolmogorov theorem characterizes the weights ω such that the family of exponentials with positive integer frequencies spans the whole weighted space \({L^2}(\mathbb{T},w)\) on the circle. Kolmogorov’s probabilistic interpretation of this result connects it with the possibility to ‘predict precisely the future from the past’ for the stationary stochastic processes with discrete time. We discuss the problem whether the prediction remains possible if some part of the ‘past’ is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Arutyunyan, A strengthening of the Men’shov ‘correction’ theorem, Matematicheskie Zametki 35 (1984), 31–41.

    MathSciNet  Google Scholar 

  2. A. Beurling and P. Malliavin, On the closure of characters and the zeros of entire functions, Acta Mathematica 118 (1967), 79–93.

    Article  MathSciNet  Google Scholar 

  3. P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Graduate Texts in Mathematics, Vol. 161, Springer, 1995.

  4. U. Grenander and G. Szegö, Toeplitz Forms and Their Applications, Chelsea, New York, 1984.

    MATH  Google Scholar 

  5. V. P. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 28, Springer, Berlin-Heidelberg, 1994.

    Book  Google Scholar 

  6. A. N. Kolmogorov, Stationary sequences in Hilbert space, Bolletin Moskovskogo Gosudarstvenogo Universiteta. Matematika 2 (1941), 1–40.

    MathSciNet  Google Scholar 

  7. P. Koosis, The Logarithmic Integral. Vol. II, Cambridge Studies in Advanced Mathematics, Vol. 21, Cambridge University Press, Cambridge, 1992.

    Book  Google Scholar 

  8. P. Koosis, Introduction to HpSpaces, Cambridge Tracts in Mathematics, Vol. 115, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  9. M. Krein, On a problem of extrapolation of A. N. Kolmogoroff, Comptes Rendus (Dok-lady) de L’Académie Des Sciences de L’URSS 46 (1945), 306–309.

    MathSciNet  MATH  Google Scholar 

  10. B. Ya. Levin, Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1964.

    Book  Google Scholar 

  11. W. A. J. Luxemburg and J. Korevaar, Entire functions and Müntz-Szász type approximation, Transactions of the American Mathematical Society 157 (1971), 23–37.

    MathSciNet  MATH  Google Scholar 

  12. S. Mandelbrojt, Séries de Fourier et classes guasianalytiques de fonctions, Gauthier-Villars, Paris, 1935.

    MATH  Google Scholar 

  13. A. M. Olevskiĭ, Modifications of functions and Fourier series, Uspekhi Matematicheskikh Nauk 40 (1985), 157–193, 240.

    MathSciNet  Google Scholar 

  14. A. Olevskii and A. Ulanovskii On the Szegő—Kolmogorov prediction theorem, https://arxiv.org/abs/1912.10665.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ulanovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olevskii, A., Ulanovskii, A. On the Szegő—Kolmogorov prediction theorem. Isr. J. Math. 246, 335–351 (2021). https://doi.org/10.1007/s11856-021-2248-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2248-4

Navigation