Skip to main content
Log in

High-girth near-Ramanujan graphs with localized eigenvectors

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that for every prime d and α ∈ (0, 1/6), there is an infinite sequence of (d + 1)-regular graphs G = (V, E) with high girth Ω(α logd(∣V∣), second adjacency matrix eigenvalue bounded by \((3/\sqrt 2)\sqrt d \), and many eigenvectors fully localized on small sets of size O(mα). This strengthens the results of [GS18], who constructed high girth (but not expanding) graphs with similar properties, and may be viewed as a discrete analogue of the “scarring” phenomenon observed in the study of quantum ergodicity on manifolds. Key ingredients in the proof are a technique of Kahale [Kah92] for bounding the growth rate of eigenfunctions of graphs, discovered in the context of vertex expansion and a method of Erdős and Sachs for constructing high girth regular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon, S. Butler, R. Graham and U. C. Rajkumar, Permutations resilient to deletions, Annals of Combinatorics 22 (2018), 673–680.

    Article  MathSciNet  Google Scholar 

  2. N. Anantharaman and E. Le Masson, Quantum ergodicity on large regular graphs, Duke Mathematical Journal 164 (2015), 723–765.

    Article  MathSciNet  Google Scholar 

  3. N. Anantharaman, Delocalization of Schrödinger eigenfunctions, in Proceedings of the International Congress of Mathematicians—Rio de Janeiro, 2018. Vol. I. Plenary Lectures, World Scientific, Hackensack, NJ, 2018, pp. 341–375.

    Google Scholar 

  4. R. Bauerschmidt, J. Huang and H.-T. Yau, Local kesten–Mckay law for random regular graphs Communications in Mathematical Physics 369 (2019), 523–636.

    Article  MathSciNet  Google Scholar 

  5. S. Brooks and E. Lindenstrauss, Non-localization of eigenfunctions on large regular graphs, Israel Journal of Mathematics 193 (2013), 1–14.

    Article  MathSciNet  Google Scholar 

  6. S. Brooks, E. Le Masson and E. Lindenstrauss, Quantum ergodicity and averaging operators on the sphere, International Mathematics Research Notices (2016), 6034–6064.

  7. B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European Journal of Combinatorics 1 (1980), 311–316.

    Article  MathSciNet  Google Scholar 

  8. Y. Colin De Verdiere, Ergodicité et fonctions propres du laplacien, Communications in Mathematical Physics 102 (1985), 497–502.

    Article  MathSciNet  Google Scholar 

  9. P. Erdős and H. Sachs, Reguläre graphen gegebener taillenweite mit minimaler knotenzahl, Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg. Mathematisch-Naturwissenschaftliche Reihe 12 (1963), 251–257.

    MathSciNet  MATH  Google Scholar 

  10. J. Friedman, A proof of Alon’s second eigenvalue conjecture, in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, ACM, New York, 2003, pp. 720–724.

    Chapter  Google Scholar 

  11. S. Ganguly and N. Srivastava, On non-localization of eigenvectors of high girth graphs, International Mathematics Research Notices (2021), 5766–5790.

  12. A. Hassell and L. Hillairet, Ergodic billiards that are not quantum unique ergodic, Annals of Mathematics 171 (2010), 605–618.

    Article  MathSciNet  Google Scholar 

  13. S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bulletin of the American Mathematical Society 43 (2006), 439–561.

    Article  MathSciNet  Google Scholar 

  14. N. Kahale, On the second eigenvalue and linear expansion of regular graphs, in Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, IEEE, Piscataway, NJ, 1992, pp. 296–303.

    Chapter  Google Scholar 

  15. N. Kahale, Eigenvalues and expansion of regular graphs, Journal of the ACM 42 (1995), 1091–1106.

    Article  MathSciNet  Google Scholar 

  16. E. Le Masson and T. Sahlsten, Quantum ergodicity and Benjamini–Schramm convergence of hyperbolic surfaces, Duke Mathematical Journal 166 (2017), 3425–3460.

    Article  MathSciNet  Google Scholar 

  17. A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261–277.

    Article  MathSciNet  Google Scholar 

  18. M. R. Murty, Ramanujan graphs, Journal of the Ramanujan Mathematical Society 18 (2003), 33–52.

    MathSciNet  MATH  Google Scholar 

  19. A. Nilli, On the second eigenvalue of a graph, Discrete Mathematics 91 (1991), 207–210.

    Article  MathSciNet  Google Scholar 

  20. P. Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bulletin of the American Mathematical Society 48 (2012), 211–228.

    Article  MathSciNet  Google Scholar 

  21. A. I. Shnirel’man, Ergodic properties of eigenfunctions, Uspekhi Matematicheskikh Nauk 29 (1974), 181–182.

    MathSciNet  MATH  Google Scholar 

  22. S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Mathematical Journal 55 (1987), 919–941.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We thank an anonymous referee for a very thorough reading and many helpful comments which improved the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Srivastava.

Additional information

This work was partially completed while SG and NS were at the Simons Institute for the Theory of Computing, as part of the “Geometry of Polynomials” program.

Research supported in part by NSF grant DMS-1855464, ISF grant 281/17, BSF grant 2018267 and the Simons Foundation.

Partially supported by a Sloan Research Fellowship in mathematics and NSF Award DMS-1855688.

Supported by NSF grant CCF-1553751.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alon, N., Ganguly, S. & Srivastava, N. High-girth near-Ramanujan graphs with localized eigenvectors. Isr. J. Math. 246, 1–20 (2021). https://doi.org/10.1007/s11856-021-2217-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2217-y

Navigation