Skip to main content
Log in

Fractional flows driven by subdifferentials in Hilbert spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper presents an abstract theory on well-posedness for time-fractional evolution equations governed by subdifferential operators in Hilbert spaces. The proof relies on a regularization argument based on maximal monotonicity of time-fractional differential operators as well as energy estimates based on a nonlocal chain-rule formula for subdifferentials. Moreover, it will be extended to a Lipschitz perturbation problem. These abstract results will be also applied to time-fractional nonlinear PDEs such as time-fractional porous medium, fast diffusion, p-Laplace parabolic, Allen-Cahn equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Affili and E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives, Journal of Differential Equations 266 (2019), 4027–4060.

    MathSciNet  MATH  Google Scholar 

  2. S. Aizicovici, An abstract doubly nonlinear Volterra integral equation, Funkcialaj Ekvacioj 36 (1993), 479–497.

    MathSciNet  MATH  Google Scholar 

  3. E. N. de Azevedo, P. L. de Sousa, R. E. de Souza, M. Engelsberg, M. de N. do N. Miranda and M. A. Silva, Concentration-dependent diffusivity and anomalous diffusion: A magnetic resonance imaging study of water ingress in porous zeolite, Physical Review. E 73 (2006), Article no. 011204.

  4. V. Barbu, Nonlinear Volterra equations in a Hilbert space, SIAM Journal on Mathematical Analysis 6 (1975), 728–741.

    MathSciNet  MATH  Google Scholar 

  5. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.

    Google Scholar 

  6. V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM Journal on Mathematical Analysis 10 (1979), 552–569.

    MathSciNet  MATH  Google Scholar 

  7. V. Barbu, On a nonlinear Volterra integral equation on a Hilbert space, SIAM Journal on Mathematical Analysis 8 (1977), 346–355.

    MathSciNet  MATH  Google Scholar 

  8. H. Brézis, Monotonicity methods in Hilbert spaces and some applications to non-linear partial differential equations, in Contributions to Nonlinear Functional Analysis, Academic Press, New York-London, 1971, pp. 101–156.

    Google Scholar 

  9. H. Brézis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies, Vol. 5, North-Holland, Amsterdam-London, Elsevier, New York, 1973.

  10. Ph. Clément, On abstract Volterra equations with kernels having a positive resolvent, Israel Journal of Mathematics 36 (1980), 193–200.

    MathSciNet  MATH  Google Scholar 

  11. Ph. Clément, On abstract Volterra equations in Banach spaces with completely positive kernels, in Infinite-dimensional Systems (Retzhof, 1983), Lecture Notes in Mathematics, Vol. 1076, Springer, Berlin, 1984, pp. 32–40.

    Google Scholar 

  12. Ph. Clément and J. A. Nohel, Abstract linear and nonlinear Volterra equations preserving positivity, SIAM Journal on Mathematical Analysis 10 (1979), 365–388.

    MathSciNet  MATH  Google Scholar 

  13. Ph. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM Journal on Mathematical Analysis 12 (1981), 514–535.

    MathSciNet  MATH  Google Scholar 

  14. Ph. Clément and J. Prüss, Completely positive measures and Feller semigroups, Mathematische Annalen 287 (1990), 73–105.

    MathSciNet  MATH  Google Scholar 

  15. M. G. Crandall and J. A. Nohel, An abstract functional differential equation and a related nonlinear Volterra equation, Israel Journal of Mathematics 29 (1978), 313–328.

    MathSciNet  MATH  Google Scholar 

  16. K. Diethelm, Monotonicity of functions and sign changes of their Caputo derivatives, Fractional Calculus and Applied Analysis 19 (2016), 561–566.

    MathSciNet  MATH  Google Scholar 

  17. S. Dipierro, E. Valdinoci and V. Vespri, Decay estimates for evolutionary equations with fractional time-diffusion, Journal of Evolution Equations 19 (2019), 435–462.

    MathSciNet  MATH  Google Scholar 

  18. Abd El-Ghany El-Abd and J. J. Milczarek, Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis, Journal of Physics D: Applied Physics 37 (2004), 2305–2313.

    Google Scholar 

  19. E. Gerolymatou, I. Vardoulakis and R. Hilfer, Modelling infiltration by means of a nonlinear fractional diffusion model, Journal of Physics D: Applied Physics 39 (2006), 4104–4110.

    Google Scholar 

  20. Y. Giga and T. Namba, Well-posedness of Hamilton-Jacobi equations with Caputo’s time-fractional derivative, Communications in Partial Differential Equations 42 (2017), 1088–1120.

    MathSciNet  MATH  Google Scholar 

  21. R. Gorenflo, Y. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fractional Calculus and Applied Analysis 18 (2015), 799–820.

    MathSciNet  MATH  Google Scholar 

  22. L. Grafakos, Classical Fourier analysis, Graduate Texts in Mathematics, Vol. 249, Springer, New York, 2014.

    MATH  Google Scholar 

  23. G. Gripenberg, An existence result for a nonlinear Volterra integral equation in a Hilbert space, SIAM Journal on Mathematical Analysis 9 (1978), 793–805.

    MathSciNet  MATH  Google Scholar 

  24. G. Gripenberg, An abstract nonlinear Volterra equation, Israel Journal of Mathematics 34 (1979), 198–212.

    MathSciNet  MATH  Google Scholar 

  25. G. Gripenberg, Volterra integro-differential equations with accretive nonlinearity, Journal of Differential Equations 60 (1985), 57–79.

    MathSciNet  MATH  Google Scholar 

  26. R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Physics Review. E 51 (1995), R848–R851.

    Google Scholar 

  27. J. Kemppainen, J. Siljander, V. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in R, Mathematische Annalen 366 (2016), 941–979.

    MathSciNet  MATH  Google Scholar 

  28. T. Kiffe, A perturbation of an abstract Volterra equation, SIAM Journal on Mathematical Analysis 11 (1980), 1036–1046.

    MathSciNet  MATH  Google Scholar 

  29. T. Kiffe and M. Stecher, An abstract Volterra integral equation in a reflexive Banach space, Journal of Differential Equations 34 (1979), 303–325.

    MathSciNet  MATH  Google Scholar 

  30. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam, 2006.

    MATH  Google Scholar 

  31. Y. Kōmura, Nonlinear semi-groups in Hilbert space, Journal of the Mathematical Society of Japan 19 (1967), 493–507.

    MathSciNet  MATH  Google Scholar 

  32. M. Küntz and P. Lavallée, Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials, Journal of Physics D: Applied Physics 34 (2001), 2547–54.

    Google Scholar 

  33. W. Liu, M. Röckner and J. L. da Silva, Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM Journal on Mathematical Analysis 50 (2018), 2588–2607.

    MathSciNet  MATH  Google Scholar 

  34. S.-O. Londen and O. J. Staffans, A note on Volterra equations in a Hilbert space, Proceedings of the American Mathematical Society 70 (1978), 57–62.

    MathSciNet  MATH  Google Scholar 

  35. Y. Luchko and M. Yamamoto, General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems, Fractional Calculus and Applied Analysis 19 (2016), 1425–1434.

    MathSciNet  MATH  Google Scholar 

  36. Y. Luchko and M. Yamamoto, A survey on the recent results regarding maximum principles for the time-fractional diffusion equations, in Frontiers in Fractional Calculus, Current Developments in Mathematical Sciences, Vol. 1, Bentham, Sharjah, 2018, pp. 33–69.

    Google Scholar 

  37. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339 (2000), 1–77.

    MathSciNet  MATH  Google Scholar 

  38. R. K. Miller, On Volterra integral equations with nonnegative integrable resolvents, Journal of Mathematical Analysis and Applications 22 (1968), 319–340.

    MathSciNet  MATH  Google Scholar 

  39. E. W. Montroll and G. H. Weiss, Random Walks on Lattices. II, Journal of Mathematical Physics 6 (1965), 167–181.

    MathSciNet  MATH  Google Scholar 

  40. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer, New York, 1983.

  41. L. Plociniczak, Approximation of the Erdélyi-Kober operator with application to the time-fractional porous medium equation, SIAM Journal on Applied Mathematics 74 (2014), 1219–1237.

    MathSciNet  MATH  Google Scholar 

  42. L. Plociniczak, Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications, Communications in Nonlinear Science and Numerical Simulation 24 (2015), 169–183.

    MathSciNet  Google Scholar 

  43. L. Plociniczak and H. Okrasińska, Approximate self-similar solutions to a nonlinear diffusion equation with time-fractional derivative, Physica D 261 (2013), 85–91.

    MathSciNet  MATH  Google Scholar 

  44. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, CA, 1999.

  45. J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, Vol. 87, Birkhäuser, Basel, 1993.

  46. N. M. M. Ramos, J. M. P. Q. Delgado and V. P. de Freitas, Anomalous diffusion during water absorption in porous building materials - experimental evidence, Defect and Diffusion Forum 273-276 (2008), 156–161.

    Google Scholar 

  47. M. Reed and B. Simon, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness, Academic Press, New York-London, 1975.

    MATH  Google Scholar 

  48. S. C. Taylor, W. D. Hoff, M. Wilson and K. M. Green, Anomalous water transport properties of Portland and blended cement-based materials, Journal of Materials Science Letters 18 (1999), 1925–1927.

    Google Scholar 

  49. E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with Caputo time derivative, Journal of Differential Equations 262 (2017), 6018–6046.

    MathSciNet  MATH  Google Scholar 

  50. V. Vergara and R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Mathematische Zeitschrift 259 (2008), 287–309.

    MathSciNet  MATH  Google Scholar 

  51. V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Analysis 73 (2010), 3572–3585.

    MathSciNet  MATH  Google Scholar 

  52. V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM Journal on Mathematical Analysis 47 (2015), 210–239.

    MathSciNet  MATH  Google Scholar 

  53. V. Vergara and R. Zacher, Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations, Journal of Evolution Equations 17 (2017), 599–626.

    MathSciNet  MATH  Google Scholar 

  54. R. Zacher, Maximal regularity of type L pfor abstract parabolic Volterra equations, Journal of Evolution Equations 5 (2005), 79–103.

    MathSciNet  MATH  Google Scholar 

  55. R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, Journal of Mathematical Analysis and Applications 348 (2008), 137–149.

    MathSciNet  MATH  Google Scholar 

  56. R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialaj Ekvacioj 52 (2009), 1–18.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goro Akagi.

Additional information

Dedicated to Professor Mitsuharu Ôtani on the occasion of his 70th birthday

GA is supported by JSPS KAKENHI Grant Number JP18K18715, JP16H03946, JP16K05199, JP17H01095 and by the Alexander von Humboldt Foundation and by the Carl Friedrich von Siemens Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akagi, G. Fractional flows driven by subdifferentials in Hilbert spaces. Isr. J. Math. 234, 809–862 (2019). https://doi.org/10.1007/s11856-019-1936-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1936-9

Navigation