Skip to main content
Log in

Integrals of groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

An integral of a group G is a group H whose derived group (commutator subgroup) is isomorphic to G. This paper discusses integrals of groups, and in particular questions about which groups have integrals and how big or small those integrals can be. Our main results are:

  • If a finite group has an integral, then it has a finite integral.

  • A precise characterization of the set of natural numbers n for which every group of order n is integrable: these are the cubefree numbers n which do not have prime divisors p and q with q | p − 1.

  • An abelian group of order n has an integral of order at most n1+o(1), but may fail to have an integral of order bounded by cn for constant c.

  • A finite group can be integrated n times (in the class of finite groups) for every n if and only if it is a central product of an abelian group and a perfect group.

There are many other results on such topics as centreless groups, groups with composition length 2, and infinite groups. We also include a number of open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abdollahi, Integral of a group, in Proceedings of the 29th Iranian International Conference on Mathematics, Amirkabir University of Technology, Tehran, 1998.

    MATH  Google Scholar 

  2. K. Filom and B. Miraftab, Integral of groups, Communications in Algebra 45 (2017), 1105–1113.

    Article  MathSciNet  Google Scholar 

  3. D. Gorenstein, Finite Groups, Chelsea Publishing, New York, 1980.

    MATH  Google Scholar 

  4. Group Properties, Not all groups are commutator-realizable, https://doi.org/groupprops.subwiki.org/wiki/Derived_subgroup#Group_properties.

  5. R. M. Guralnick, On groups with decomposable commutator subgroups, Glasgow Mathematical Journal 19 (1978), 159–162.

    Article  MathSciNet  Google Scholar 

  6. G. A. Jones and J. S. Thornton, Automorphisms and congruence subgroups of the extended modular group, Journal of the London Mathematical Society 34 (1986), 26–40.

    Article  MathSciNet  Google Scholar 

  7. MathOverflow, Finite nonabelian groups of odd order, https://doi.org/mathoverflow.net/questions/31553/finite-nonabelian-groups-of-odd-order/31558#31558.

  8. MathOverflow, Realizing groups as commutator subgroups, https://doi.org/mathoverflow.net/questions/85540/realizing-groups-as-commutator-subgroups.

  9. J. B. McLeod, On the commutator subring, Quarterly Journal of Mathematics 9 (1958), 207–209.

    Article  MathSciNet  Google Scholar 

  10. M. D. Miller, Existence of finite groups with classical commutator subgroup, Journal of the Australian Mathematical Society 25 (1978), 41–44.

    Article  MathSciNet  Google Scholar 

  11. B. H. Neumann, Ascending derived series, Compositio Mathematica 13 (1956), 47–64.

    MathSciNet  MATH  Google Scholar 

  12. M. F. Newman, On a class of nilpotent groups, Proceedings of the London Mathematical Society 10 (1960), 365–375.

    Article  MathSciNet  Google Scholar 

  13. J. Nielsen, Kommutatorgruppen for det frie produkt af cykliske grupper, Matematisk Tidsskrift (1948), 49–56.

  14. D. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, Vol. 80, Springer, New York, 1996.

    Book  Google Scholar 

  15. J. J. Rotman, Introduction to the Theory of Groups, Graduate Texts in Mathematics, Vol. 148, Springer, New York, 1995.

    Book  Google Scholar 

  16. R. Sahin, O. Bizim and I. N. Cangul, Commutator subgroups of the extended Hecke groups \(\overline H \left({{{\rm{\lambda}}_q}} \right)\), Czechoslovak Mathematical Journal 54 (2004), 253–259.

    Article  MathSciNet  Google Scholar 

  17. H. Wielandt, Eine Verallgemeinerung der invarianten Untergruppen, Mathematische Zeitschrift 45 (1939), 209–244.

    Article  MathSciNet  Google Scholar 

  18. H. Zassenhaus, Lehrbuch der Gruppentheorie, Teubner, Leipzig-Berlin, 1937.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cameron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, J., Cameron, P.J., Casolo, C. et al. Integrals of groups. Isr. J. Math. 234, 149–178 (2019). https://doi.org/10.1007/s11856-019-1926-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1926-y

Navigation