Skip to main content
Log in

The trace of the canonical module

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The trace of the canonical module (the canonical trace) determines the non-Gorenstein locus of a local Cohen-Macaulay ring. We call a local Cohen-Macaulay ring nearly Gorenstein, if its canonical trace contains the maximal ideal. Similar definitions can be made for positively graded Cohen-Macaulay K-algebras. We study the canonical trace for tensor products and Segre products of algebras, as well as of (squarefree) Veronese subalgebras. The results are used to classify the nearly Gorenstein Hibi rings. We study connections between the class of nearly Gorenstein rings and that of almost Gorenstein rings. We show that in dimension one, the former class includes the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ananthnarayan, The Gorenstein colength of an Artinian local ring, Journal of Algebra 320 (2008), 3438–3446.

    Article  MathSciNet  Google Scholar 

  2. V. Barucci and R. Fröberg, One-dimensional almost Gorenstein rings, Journal of Algebra 188 (1997), 418–442.

    Article  MathSciNet  Google Scholar 

  3. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1998.

    Book  Google Scholar 

  4. W. Bruns, W. Vasconcelos and R. Villarreal, Degree bounds in monomial subrings, Illinois Journal of Mathematics 41 (1997), 341–353.

    Article  MathSciNet  Google Scholar 

  5. E. De Negri and T. Hibi, Gorenstein algebras of Veronese type, Journal of Algebra 193 (1997), 629–639.

    Article  MathSciNet  Google Scholar 

  6. W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-6—A computer algebra system for polynomial computations, https://doi.org/www.singular.uni-kl.de.

  7. M. Delgado, P. A. García-Sánchez and J. Morais, numericalsgps, a GAP package on numerical semigroups, https://doi.org/www.gap-system.org/Packages/numericalsgps.html.

  8. S. Ding, A note on the index of Cohen-Macaulay local rings, Communications in Algebra 21 (1993), 53–71.

    Article  MathSciNet  Google Scholar 

  9. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Vol. 150, Springer, New York, 1995.

    MATH  Google Scholar 

  10. The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.7.5, 2014, https://doi.org/www.gap-system.org.

  11. S. Goto, N. Matsuoka and T. Thi Phuong, Almost Gorenstein rings, Journal of Algebra 379 (2013), 355–381.

    Article  MathSciNet  Google Scholar 

  12. S. Goto, R. Takahashi and N. Taniguchi, Almost Gorenstein rings—towards a theory of higher dimension, Journal of Pure and Applied Algebra 219 (2015), 2666–2712.

    Article  MathSciNet  Google Scholar 

  13. S. Goto and K.-i Watanabe, On graded rings, I, Journal of the Mathematical Society of Japan 30 (1978), 179–213.

    Article  MathSciNet  Google Scholar 

  14. J. Herzog and T. Hibi, Monomial Ideals, Graduate Texts in Mathematics, Vol. 260, Springer-Verlag, London, 2011.

    Book  Google Scholar 

  15. T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in Commutative Algebra and Combinatorics Advanced Studies in Pure Mathematics, Vol. 11, North-Holland, Amsterdam, 1987, pp. 93–109.

    Chapter  Google Scholar 

  16. T. Hibi, Canonical ideals of Cohen-Macaulay partially ordered sets, Nagoya Mathematical Journal 112 (1988), 1–24.

    Article  MathSciNet  Google Scholar 

  17. L. T. Hoa and N. D. Tam, On some invariants of a mixed product of ideals, Archiv der Mathematik 94 (2010), 327–337.

    Article  MathSciNet  Google Scholar 

  18. C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, Vol. 336, Cambridge University Press, Cambridge, 2006.

    MATH  Google Scholar 

  19. C. Huneke and A. Vraciu, Rings that are almost Gorenstein, Pacific Journal of Mathematics 225 (2006), 85–102.

    Article  MathSciNet  Google Scholar 

  20. H. Lindo, Trace ideals and centers of endomorphism rings of modules over commutative rings, Journal of Algebra 482 (2017), 102–130.

    Article  MathSciNet  Google Scholar 

  21. J. Lipman, Stable ideals and Arf rings, American Journal of Mathematics 93 (1971), 649–685.

    Article  MathSciNet  Google Scholar 

  22. H. Matsumura, Commutative Algebra, Mathematics Lecture Notes Series, Vol. 56, The Benjamin/Cummings Publishing, Reading, MA, 1980.

    MATH  Google Scholar 

  23. H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1987.

    Book  Google Scholar 

  24. D. G. Northcott and D. Rees, Reductions of ideals in local rings, Mathematical Proceedings of the Cambridge Philosophical Society 50 (1954), 145–158.

    Article  MathSciNet  Google Scholar 

  25. B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, Vol. 8, American Mathematical Society, Providence, RI, 1996.

    MATH  Google Scholar 

  26. W. V. Vasconcelos, Computing the integral closure of an affine domain, Proceedings of the American Mathematical Society 113 (1991), 633–638.

    Article  MathSciNet  Google Scholar 

  27. R. Villarreal, Normality of subrings generated by square free monomials, Journal of Pure and Applied Algebra 113 (1996), 91–106.

    Article  MathSciNet  Google Scholar 

  28. Ch. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.

    Book  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the use of the Singular ([6]) software and of the numericalsgps package ([7]) in GAP ([10]) for our computations. We thank the anonymous referees for their comments which improved the exposition and strengthened some results, in particular for kindly suggesting Theorem 6.6 and its proof.

Takayuki Hibi was partially supported by JSPS KAKENHI 19H00637.

Dumitru Stamate was supported by a fellowship at the Research Institute of the University of Bucharest (ICUB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru I. Stamate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzog, J., Hibi, T. & Stamate, D.I. The trace of the canonical module. Isr. J. Math. 233, 133–165 (2019). https://doi.org/10.1007/s11856-019-1898-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1898-y

Navigation