Skip to main content
Log in

Arithmetic progressions in multiplicative groups of finite fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let G be a multiplicative subgroup of the prime field F p of size |G| > p1−κ and r an arbitrarily fixed positive integer. Assuming κ = κ(r) > 0 and p large enough, it is shown that any proportional subset AG contains non-trivial arithmetic progressions of length r. The main ingredient is the Szemerédi–Green–Tao theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon and J. Bourgain, Additive patterns in multiplicative subgroups, Geometric and Functional Analysis, 24 (2014), 721–739.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proceedings of the National Academy of Sciences of the United States of America, 32 (1946), 331–332.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. Shparlinski, Multiplicative congruences with variables from short intervals, Journal d’Analyse Mathématique, 124 (2014), 117–147.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Conlon, J. Fox and Y. Zhao, A relative Szemerédi theorem, Geometric and Functional Analysis 25 (2015), 733–762.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Croot, V. Lev and P. P. Pach, Progression-free sets in Z 4n are exponentially small, Annals of Mathematics, 185 (2017), 331–337.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Elkin, An improved construction of progression free sets, Israel Journal of Mathematics, 184 (2011), 93–128.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Ellenberg and D. Gijswijt, On large subsets of F nq with no three-term arithmetic progression, Annals of Mathematics, 185 (2017), 339–3434.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.-H. Evertse, H. Schlickewei and W. Schmidt, Linear equations in variables which lie in a multiplicative group, Annals of Mathematics, 155 (2002), 807–836.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Garcia and J. F. Voloch, Fermat curves over finite fields, Journal of Number Theory, 30 (1988), 345–356.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics, 167 (2008), 481–547.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Host, Arithmetic progressions in primes, in Séminaire Bourbaki, Vol. 2004/2005, Astérisque, Vol. 307, Société Mathématique de France, Marseilles, 2006, pp. 229–246.

    MathSciNet  MATH  Google Scholar 

  12. D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from kth powers, and for Heilbronns exponential sum, Quarterly Journal of Mathematics, 51 (2000), 221–235.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. V. Konyagin, Estimates for trigonometric sums and for Gaussian sums, in IV International Conference “Modern Problems of Number Theory and its Applications”: Current Problems, Part III (Tula, 2001), Moskovskiĭ Gosudarstvenyĭ Universitet Imeni M. V. Lemonosov, Mekhaniko-Matematicheskiĭ Fakultet, Moscow, 2002, pp. 86–114.

    Google Scholar 

  14. R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, Journal of Combinatorial Theory. Series A, 71 (1995), 168–172.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Roth, On certain sets of integers, Journal of the London Mathematical Society, 28 (1953), 245–252.

    MathSciNet  Google Scholar 

  16. R. Salem and D. Spencer, On sets of integers which contain no three in arithmetic progression, Proceedings of the National Academy of Sciences of the United States of America, 28 (1942), 561–563.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Sanders, On Roth’s theorem on progressions, Annals of Mathematics, 174 (2011), 619–636.

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Shkredov and I. Vyugin, On additive shifts of multiplicative subgroups, Matematicheski ĭ Sbornik, 203 (2012), 81–100.

    MathSciNet  Google Scholar 

  19. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica, 27 (1975), 299–345.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Chu Chang.

Additional information

Research partially financed by the NSF Grants DMS 1600154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, MC. Arithmetic progressions in multiplicative groups of finite fields. Isr. J. Math. 222, 631–643 (2017). https://doi.org/10.1007/s11856-017-1602-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1602-z

Navigation