Skip to main content
Log in

The weakness of being cohesive, thin or free in reverse mathematics

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Informally, a mathematical statement is robust if its strength is left unchanged under variations of the statement. In this paper, we investigate the lack of robustness of Ramsey’s theorem and its consequence under the frameworks of reverse mathematics and computable reducibility. To this end, we study the degrees of unsolvability of cohesive sets for different uniformly computable sequence of sets and identify different layers of unsolvability. This analysis enables us to answer some questions of Wang about how typical sets help computing cohesive sets.

We also study the impact of the number of colors in the computable reducibility between coloring statements. In particular, we strengthen the proof by Dzhafarov that cohesiveness does not strongly reduce to stable Ramsey’s theorem for pairs, revealing the combinatorial nature of this nonreducibility and prove that whenever k is greater than l, stable Ramsey’s theorem for n-tuples and k colors is not computably reducible to Ramsey’s theorem for n-tuples and l colors. In this sense, Ramsey’s theorem is not robust with respect to his number of colors over computable reducibility. Finally, we separate the thin set and free set theorem from Ramsey’s theorem for pairs and identify an infinite decreasing hierarchy of thin set theorems in reverse mathematics. This shows that in reverse mathematics, the strength of Ramsey’s theorem is very sensitive to the number of colors in the output set. In particular, it enables us to answer several related questions asked by Cholak, Giusto, Hirst and Jockusch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Avigad, E. T. Dean and J. Rute, Algorithmic randomness, reverse mathematics, and the dominated convergence theorem, Ann. Pure Appl. Logic 163 (2012), 1854–1864.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Bienvenu, L. Patey and P. Shafer, On the logical strengths of partial solutions to mathematical problems, ArXiv e-prints (2014).

    Google Scholar 

  3. A. Bovykin and A. Weiermann, The strength of infinitary Ramseyan principles can be accessed by their densities, Ann. Pure Appl. Logic, to appear (2005).

    Google Scholar 

  4. V. Brattka and T. Rakotoniaina, On the Uniform Computational Content of Ramsey’s Theorem, ArXiv e-prints (2015).

    Google Scholar 

  5. P. A. Cholak, M. Giusto, J. L. Hirst and C. G. Jockusch, Free sets and reverse mathematics, in Reverse mathematics 2001, Lect. Notes Log., Vol. 21, Assoc. Symbol. Logic, La Jolla, CA, 2005, pp. 104–119.

    Google Scholar 

  6. P. A. Cholak, C. G. Jockusch and T. A. Slaman, On the strength of Ramsey’s theorem for pairs, J. Symbolic Logic 66 (2001), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. T. Chong, S. Lempp and Y. Yang, On the role of the collection principle for S02-formulas in second-order reverse mathematics, Proc. Amer. Math. Soc. 138 (2010), 1093–1100.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. T. Chong, T. A. Slaman and Y. Yang, The metamathematics of stable Ramsey’s theorem for pairs, J. Amer. Math. Soc. 27 (2014), 863–892.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. G. Dorais, D. D. Dzhafarov, J. L. Hirst, J. R. Mileti and P. Shafer, On uniform relationships between combinatorial problems, Trans. Amer. Math. Soc. 368 (2016), 1321–1359.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. D. Dzhafarov, Cohesive avoidance and arithmetical sets, ArXiv e-prints (2012).

    Google Scholar 

  11. D. D. Dzhafarov, Strong reductions between combinatorial principles, Journal of Symbolic Logic, to appear.

  12. D. D. Dzhafarov, Cohesive avoidance and strong reductions, Proc. Amer. Math. Soc. 143 (2015), 869–876.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Friedberg, A criterion for completeness of degrees of unsolvability, J. Symb. Logic 22 (1957), 159–160.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. M. Friedman, Fom:53:free sets and reverse math and fom:54:recursion theory and dynamics, Available at https://www.cs.nyu.edu/pipermail/fom/.

  15. H. M. Friedman, Boolean relation theory and incompleteness, Lecture Notes in Logic, to appear (2013).

    Google Scholar 

  16. N. Greenberg and J. S. Miller, Lowness for Kurtz randomness, J. Symbolic Logic 74 (2009), 665–678.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. R. Hirschfeldt, Slicing the truth, Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore, Vol. 28, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015, On the computable and reverse mathematics of combinatorial principles, Edited and with a foreword by Chitat Chong, Qi Feng, Theodore A. Slaman, W. Hugh Woodin and Yue Yang.

  18. D. R. Hirschfeldt and C. G. Jockusch, On notions of computability theoretic reduction between 12 principles, To appear.

  19. D. R. Hirschfeldt and R. A. Shore, Combinatorial principles weaker than Ramsey’s theorem for pairs, J. Symbolic Logic 72 (2007), 171–206.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. G. Jockusch, A. Lewis and J. B. Remmel, 01-classes and Rado’s selection principle, J. Symbolic Logic 56 (1991), 684–693.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Jockusch and F. Stephan, A cohesive set which is not high, Math. Logic Quart. 39 (1993), 515–530.

    Article  MathSciNet  MATH  Google Scholar 

  22. C. G. Jockusch, Ramsey’s theorem and recursion theory, J. Symbolic Logic 37 (1972), 268–280.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. G. Jockusch, Degrees of generic sets, in Recursion theory: its generalisation and applications (Proc. Logic Colloq., Univ. Leeds, Leeds, 1979), London Math. Soc. Lecture Note Ser., Vol. 45, Cambridge Univ. Press, Cambridge-New York, 1980, pp. 110–139.

    Chapter  Google Scholar 

  24. C. G. Jockusch and R. I. Soare, 01 classes and degrees of theories, Trans. Amer. Math. Soc. 173 (1972), 33–56.

    MathSciNet  MATH  Google Scholar 

  25. S. M. Kautz, Degrees of random sets, ProQuest LLC, Ann Arbor, MI, 1991, Thesis (Ph.D.)–Cornell University.

    Google Scholar 

  26. S. M. Kautz, An improved zero-one law for algorithmically random sequences, Theoret. Comput. Sci. 191 (1998), 185–192.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Khan and J. S. Miller, Forcing with bushy trees, Preprint (2014).

    Google Scholar 

  28. B. Kjos-Hanssen, Infinite subsets of random sets of integers, Math. Res. Lett. 16 (2009), 103–110.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Lerman, R. Solomon and H. Towsner, Separating principles below Ramsey’s theorem for pairs, J. Math. Log. 13 (2013), 1350007, 44.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Liu, RT22 does not imply WKL0, J. Symbolic Logic 77 (2012), 609–620.

    Article  MathSciNet  Google Scholar 

  31. J. R. Mileti, Partition theorems and computability theory, ProQuest LLC, Ann Arbor, MI, 2004, Thesis (Ph.D.)–University of Illinois at Urbana-Champaign.

    MATH  Google Scholar 

  32. W. Miller and D. A. Martin, The degrees of hyperimmune sets, Z. Math. Logik Grundlagen Math. 14 (1968), 159–166.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Montalbán, Open questions in reverse mathematics, Bull. Symbolic Logic 17 (2011), 431–454.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Patey, Controlling iterated jumps of solutions to combinatorial problems, Computability, to appear.

  35. L. Patey, Combinatorial weaknesses of Ramseyan principles, In preparation (2015), Available athttp://ludovicpatey.com/media/research/combinatorial-weaknesses-draft.pdf.

    Google Scholar 

  36. L. Patey, Degrees bounding principles and universal instances in reverse mathematics, Ann. Pure Appl. Logic 166 (2015), 1165–1185.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Patey, Iterative forcing and hyperimmunity in reverse mathematics, in Evolving computability, Lecture Notes in Comput. Sci., Vol. 9136, Springer, Cham, 2015, pp. 291–301.

    Google Scholar 

  38. T. Rakotoniaina, The computational strength of Ramseys theorem, 2015, Thesis (Ph.D.)–University of Cape Town.

    Google Scholar 

  39. J. G. Rosenstein, Linear orderings, Pure and Applied Mathematics, Vol. 98, Academic Press, Inc.[Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

    Google Scholar 

  40. D. Seetapun and T. A. Slaman, On the strength of Ramsey’s theorem, Notre Dame J. Formal Logic 36 (1995), 570–582, Special Issue: Models of arithmetic.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. (2) 69 (1959), 644–653.

    Article  MathSciNet  MATH  Google Scholar 

  42. S. G. Simpson, An extension of the recursively enumerable Turing degrees, J. Lond. Math. Soc. (2) 75 (2007), 287–297.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. G. Simpson, Subsystems of second order arithmetic, second ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009.

    Book  Google Scholar 

  44. F. Stephan, Martin-Löf random and PA-complete sets, in Logic Colloquium’ 02, Lect. Notes Log., Vol. 27, Assoc. Symbol. Logic, La Jolla, CA, 2006, pp. 342–348.

    Google Scholar 

  45. M. van Lambalgen, The axiomatization of randomness, J. Symbolic Logic 55 (1990), 1143–1167.

    Article  MathSciNet  MATH  Google Scholar 

  46. W. Wang, Omitting cohesive sets, Nanjing Daxue Xuebao Shuxue Bannian Kan 30 (2013), 40–47.

    MathSciNet  MATH  Google Scholar 

  47. W. Wang, Some logically weak Ramseyan theorems, Adv. Math. 261 (2014), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  48. W. Wang, The Definability Strength of Combinatorial Principles, ArXiv e-prints (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Patey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patey, L. The weakness of being cohesive, thin or free in reverse mathematics. Isr. J. Math. 216, 905–955 (2016). https://doi.org/10.1007/s11856-016-1433-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1433-3

Navigation