Skip to main content
Log in

A homogeneous space whose complement is rigid

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We construct a homogeneous subspace of 2ω whose complement is dense in 2ω and rigid. Using the same method, assuming Martin’s Axiom, we also construct a countable dense homogeneous subspace of 2ω whose complement is dense in 2ω and rigid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam 14, 1929.

  2. F. D. Ancel, P. F. Duvall and S. Singh, Rigid 3-dimensional compacta whose squares are manifolds, Proceedings of the American Mathematical Society 88 (1983), 330–332.

    MathSciNet  MATH  Google Scholar 

  3. F. D. Ancel and S. Singh, Rigid finite-dimensional compacta whose squares are manifolds, Proceedings of the American Mathematical Society 87 (1983), 342–346.

    MathSciNet  MATH  Google Scholar 

  4. A. V. Arkhangel’skiĭ and J. van Mill, Topological homogeneity, in Recent Progress in General Topology III, Atlantis Press, 2014, pp. 1–68.

    Google Scholar 

  5. S. Baldwin and R. E. Beaudoin, Countable dense homogeneous spaces under Martin's axiom, Israel Journal of Mathematics 65 (1989), 153–164.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fundamenta Mathematicae 60 (1967), 241–249.

    MathSciNet  MATH  Google Scholar 

  7. J. Dijkstra, A rigid space whose square is the Hilbert space, Proceedings of the American Mathematical Society 93 (1985), 118–120.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Dijkstra, A rigid imbedding of the Hilbert space in the Hilbert cube, Bulletin of the Polish Academy of Sciences Mathematics 34 (1986), 225–229.

    MathSciNet  MATH  Google Scholar 

  9. E. K. van Douwen, A compact space with a measure that knows which sets are homeomorphic, Advances in Mathematics 52 (1984), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. van Engelen, A decomposition of R into two homeomorphic rigid parts, Topology and its Applications 17 (1984), 275–285.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. van Engelen and J. van Mill, Decompositions of rigid spaces, Proceedings of the American Mathematical Society 89 (1983), 533–536.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. van Engelen, A.W. Miller and J. Steel, Rigid Borel sets and better quasi-order theory, in Logic and Combinatorics (Arcata, Calif., 1985), Contemporary Mathematics, 65 (1987), 199–222, American Mathematical Society, Providence, RI.

    Article  Google Scholar 

  13. J. de Groot and R. J. Wille, Rigid continua and topological group-pictures, Archiv der Mathematik 9 (1958), 441–446.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. S. Kechris, Classical Descriptive set Theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  15. K. Kunen, Set Theory, Studies in Logic (London), 34, College Publications, London, 2011.

    MATH  Google Scholar 

  16. K. Kunen, A. Medini and L. Zdomskyy, Seven characterizations of nonmeager Pfilters, Fundamenta Mathematicae 231 (2015), 189–208.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Kuratowski, Sur la puissance de l'ensemble des “nombres de dimension” au sens de M. Fréchet, Fundamenta Mathematicae 8 (1926), 201–208.

    MATH  Google Scholar 

  18. L. B. Lawrence, A rigid subspace of the real line whose square is a homogeneous subspace of the plane, Transactions of the American Mathematical Society 357 (2005), 2535–2556.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Medini, Products and countable dense homogeneity, Top. Proc. 46 (2015), 135–143.

    MathSciNet  MATH  Google Scholar 

  20. J. van Mill, A rigid space X for which X ×X is homogeneous; an application of infinite-dimensional topology, Proceedings of the American Mathematical Society 83 (1981), 597–600.

    MathSciNet  MATH  Google Scholar 

  21. J. van Mill, Homogeneous subsets of the real line, Compositio Mathematica 46 (1982), 3–13.

    MathSciNet  MATH  Google Scholar 

  22. J. van Mill, Sierpiński's technique and subsets of R, Topology and its Applications 44 (1992), 241–261.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. van Mill, The Infinite-dimensional Topology of Function Spaces, North-Holland Mathematical Library, 64. North-Holland Publishing Co., Amsterdam, 2001.

    Google Scholar 

  24. J. van Mill and E. Wattel, Partitioning spaces into homeomorphic rigid parts, Colloquium Mathematicum 50 (1985), 95–102.

    MathSciNet  MATH  Google Scholar 

  25. S. Shelah, Decomposing topological spaces into two rigid homeomorphic subspaces, Israel Journal of Mathematics 63 (1988), 183.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Medini.

Additional information

The first-listed and third-listed authors were supported by the FWF grant I 1209-N25.

The second-listed author acknowledges generous hospitality and support from the Kurt Gödel Research Center for Mathematical Logic.

The third-listed author also thanks the Austrian Academy of Sciences for its generous support through the APART Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medini, A., van Mill, J. & Zdomskyy, L. A homogeneous space whose complement is rigid. Isr. J. Math. 214, 583–595 (2016). https://doi.org/10.1007/s11856-016-1348-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-016-1348-z

Navigation