Skip to main content
Log in

Multiplicity operators

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

For functions of a single complex variable, zeros of multiplicity greater than k are characterized by the vanishing of the first k derivatives. There are various quantitative generalizations of this statement, showing that for functions that are in some sense close to having a zero of multiplicity greater than k, the first k derivatives must be small.

In this paper we aim to generalize this situation to the multi-dimensional setting. We define a class of differential operators, the multiplicity operators, which act on maps from ℂn to ℂn and satisfy properties analogous to those described above. We demonstrate the usefulness of the construction by applying it to some problems in the theory of Noetherian functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps. Volume 1, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012.

    Book  MATH  Google Scholar 

  2. G. Binyamini and S. Yakovenko, Polynomial bounds for the oscillation of solutions of Fuchsian systems, Université de Grenoble. Annales de l’Institut Fourier 59 (2009), 2891–2926.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer- Verlag, New York, 1995.

    MATH  Google Scholar 

  4. D. Eisenbud and H. I. Levine, An algebraic formula for the degree of a C map germ, Annals of Mathematics 106 (1977), 19–44.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Gabrièlov, Multiplicities of Pfaffian intersections, and the łojasiewicz inequality, Selecta Mathematica 1 (1995), 113–127.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Gabrielov and A. Khovanskii, Multiplicity of a Noetherian intersection, in Geometry of Differential Equations, American Mathematical Society Translations, Series 2, Vol. 186, American Mathematical Society, Providence, RI, 1998, pp. 119–130.

    Google Scholar 

  7. C. Grant Melles and P. Milman, Classical Poincaré metric pulled back off singularities using a Chow-type theorem and desingularization, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6 15 (2006), 689–771.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, Vol. 336, Cambridge University Press, Cambridge, 2006.

    MATH  Google Scholar 

  9. S. Ji, J. Kollár and B. Shiffman, A global łojasiewicz inequality for algebraic varieties, Transactions of the American Mathematical Society 329 (1992), 813–818.

    MathSciNet  MATH  Google Scholar 

  10. K. Kaveh and A. G. Khovanskii, Convex bodies and multiplicities of ideals, Proceedings of the Steklov Institute of Mathematics 286 (2014), 268–284.

    Article  MATH  Google Scholar 

  11. A. G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs, Vol. 88, American Mathematical Society, Providence, RI, 1991.

    MATH  Google Scholar 

  12. J. Kollár, Sharp effective Nullstellensatz, Journal of the American Mathematical Society 1 (1988), 963–975.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Lejeune-Jalabert and B. Teissier, Clôture intégrale des idéaux et équisingularité, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 6 17 (2008), 781–859.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.-C. Tougeron, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanski ĭ, Université de Grenoble. Annales de lInstitut Fourier 41 (1991), 823–840.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Yakovenko, Quantitative theory of ordinary differential equations and the tangential Hilbert 16th problem, in On Finiteness in Differential Equations and Diophantine Geometry, CRM Monograph Series, Vol. 24, American Mathematical Society, Providence, RI, 2005, pp. 41–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Binyamini.

Additional information

The first author was supported by the Banting Postdoctoral Fellowship and the Rothschild Fellowship.

Supported by the Minerva foundation with funding from the Federal German Ministry for Education and Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binyamini, G., Novikov, D. Multiplicity operators. Isr. J. Math. 210, 101–124 (2015). https://doi.org/10.1007/s11856-015-1247-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1247-8

Keywords

Navigation