Skip to main content
Log in

The Miniowitz and Vuorinen theorems for the mappings with non-bounded characteristics

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of classes of mappings with non-bounded characteristics of quasiconformality. We prove that the normal families of Q-mappings have the logarithmic order of growth in a neighborhood of a point. Moreover, we establish sufficient conditions for Q to ensure the normality of mappings f: D, n ≥ 2, which omit the points of a set E f . The latter obeys c(E f ) ≥ δ, δ > 0, where c(·) is an appropriate set function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Andreian Cazacu, On the length-area dilatation, Complex Variables. Theory and Applications 50 (2005), 765–776.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. J. Bishop, V. Ya. Gutlyanskii, O. Martio and M. Vuorinen, On conformal dilatation in space, International Journal of Mathematics and Mathematical Sciences 22 (2003), 1397–1420.

    Article  MathSciNet  Google Scholar 

  3. M. Cristea, Local homeomorphisms having local ACL n inverses, Complex Variables and Elliptic Equations 53 (2008), 77–99.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Golberg, Differential properties of (α, Q)-homeomorphisms, in Further Progress in Analysis, World Scientific Publ., Hackensack, NJ, 2009, pp. 218–228.

    Chapter  Google Scholar 

  5. A. Golberg and R. Salimov, Topological mappings of integrally bounded p-moduli, Annals of the University of Bucharest. Mathematical Seriesies 3 (2012), 49–66.

    MathSciNet  Google Scholar 

  6. V. Ya. Gutlyanskii, V. I. Ryazanov, U. Srebro and E. Yakubov, The Beltrami Equation: A Geometric Approach, Developments in Mathematics, Vol. 26, Springer, New York, 2012.

    Google Scholar 

  7. P. Hartman, On isometries and on a theorem of Liouville, Mathematische Zeitschrift 69 (1958), 202–210.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Ignat’ev and V. Ryazanov, Finite mean oscillation in the mapping theory, Ukrainian Mathematical Bulletin 2 (2005), 403–424.

    MathSciNet  Google Scholar 

  9. F. John and L. Nirenberg, On functions of bounded mean oscillation, Communications on Pure and Applied Mathematics 14 (1961), 415–426.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Kuratowski, Topology, Vol. 2, Academic Press, New York-London, 1968.

    Google Scholar 

  11. O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York, 1973.

    Book  MATH  Google Scholar 

  12. O. Martio, S. Rickman and J. Väisälä, Definitions for quasiregular mappings, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 448 (1969), 1–40.

    Google Scholar 

  13. O. Martio, S. Rickman and J. Väisälä, Distortion and singularities of quasiregular mappings, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 465 (1970), 1–13.

    Google Scholar 

  14. O. Martio, S. Rickman and J. Väisälä, Topological and metric properties of quasiregular mappings, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 488 (1971), 1–31.

    Google Scholar 

  15. O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, New York, 2009.

    MATH  Google Scholar 

  16. V. M. Miklyukov, Conformal Maps of Nonsmooth Surfaces and Their Applications, Xlibris Corporation, Philadelphia, PA, 2008.

    Google Scholar 

  17. R. Miniowitz, Normal families of quasimeromorphic mappings, Proceedings of the American Mathematical Society 84 (1982), 35–43.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Institut des Hautes Études Scientifiques. Publications Mathématiques 34 (1968), 53–104.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. A. Poletskii, The modulus method for non-homeomorphic quasiconformal mappings, Matematicheskiĭ Sbornik 83(125) (1970), no. 2, 261–272.

    Google Scholar 

  20. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Mathematical Monographs, Vol. 73, American Mathematical Society, Providence, RI, 1989.

    MATH  Google Scholar 

  21. S. Rickman, Quasiregular Mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 26, Springer, Berlin, 1993.

    Book  MATH  Google Scholar 

  22. V. Ryazanov, U. Srebro and E. Yakubov, On ring solutions of Beltrami equations, Journal d’Analyse Mathématique 96 (2005), 117–150.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. A. Sevost’yanov, Theory of moduli, capacities and normal families of mappings admitting a branching, Ukrainian Mathematical Bulletin 4 (2007), 573–593.

    MathSciNet  Google Scholar 

  24. E. A. Sevost’yanov, Generalization of one Poletskii lemma to classes of space mappings, Ukrainian Mathematical Journal 61 (2009), 1151–1157.

    Article  MathSciNet  Google Scholar 

  25. E. A. Sevost’yanov, On the integral characterization of some generalized quasiregular mappings and the significance of the conditions of divergence of integrals in the geometric theory of function, Ukrainian Mathematical Journal 61 (2009), 1610–1623.

    Article  MathSciNet  Google Scholar 

  26. E. A. Sevost’yanov, On the branch points of mappings with the unbounded coefficient of quasiconformality, Siberian Mathematical Journal 51 (2010), 899–912.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, Vol. 229, Springer, Berlin, 1971.

    MATH  Google Scholar 

  28. M. Vuorinen, Some inequalities for the moduli of curve families, Michigan Mathematical Journal 30 (1983), 369–380.

    Article  MathSciNet  Google Scholar 

  29. M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Mathematics, Vol. 1319, Springer, Berlin, 1988.

    MATH  Google Scholar 

  30. L. Zalcman, A heuristic principle in complex function theory, American Mathematical Monthly 82 (1975), 813–817.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Sevost’yanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevost’yanov, E. The Miniowitz and Vuorinen theorems for the mappings with non-bounded characteristics. Isr. J. Math. 209, 527–545 (2015). https://doi.org/10.1007/s11856-015-1228-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1228-y

Keywords

Navigation