Skip to main content
Log in

Lexicographic shellability of the Bruhat-Chevalley order on fixed-point-free involutions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to prove that the Bruhat-Chevalley ordering of the symmetric group when restricted to the fixed-point-free involutions forms an EL-shellable poset whose order complex triangulates a ball. Another purpose of this article is to prove that the Deodhar-Srinivasan poset is a proper, graded subposet of the Bruhat-Chevalley poset on fixed-point-free involutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bagno and Y. Cherniavsky, Congruence B-orbits and the Bruhat poset of involutions of the symmetric group, Discrete Mathematics 312 (2012), 1289–1299.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Beĭlinson and J. Bernstein, Localisation de g-modules, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 292 (1981), 15–18.

    MATH  Google Scholar 

  3. A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Transactions of the American Mathematical Society 260 (1980), 159–183.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Björner and M. Wachs, Bruhat order of Coxeter groups and shellability, Advances in Mathematics 43 (1982), 87–100.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bóna, Combinatorics of Permutations, second ed., Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2012.

    Book  MATH  Google Scholar 

  6. M. B. Can, The rook monoid is lexicographically shellable, preprint available at http://arxiv.org/abs/1001.5104.

  7. M. B. Can and Y. Cherniavsky, Omitting parentheses from the cyclic notation, Mediterranean Journal of Mathematics, in press, DOI 10.1007/s00009-014-0467-1, preprint available from http://arxiv.org/abs/1308.0936.

  8. M. B. Can, Y. Cherniavsky and T. Twelbeck, Bruhat Order on Partial Fixed Point Free Involutions, The Electronic Journal of Combinatorics 21 (2014), paper #P4.34.

  9. M. B. Can and L. E. Renner, Bruhat-Chevalley order on the rook monoid, Turkish Journal of Mathematics 35 (2011), 1–21.

    MathSciNet  Google Scholar 

  10. M. B. Can and T. Twelbeck, Lexicographic shellability of partial involutions, Discrete Mathematics 335 (2014), 66–80.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Cherniavsky, On involutions of the symmetric group and congruence B-orbits of antisymmetric matrices, International Journal of Algebra and Computation 21 (2011), 841–856.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Danaraj and V. Klee, Shellings of spheres and polytopes, Duke Mathematical Journal 41 (1974), 443–451.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. S. Deodhar and M. K. Srinivasan, A statistic on involutions, Journal of Algebraic Combinatorics 13 (2001), 187–198.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. J. Dyer, Hecke algebras and shellings of Bruhat intervals, Compositio Mathematica 89 (1993), 91–115.

    MATH  MathSciNet  Google Scholar 

  15. P. H. Edelman, The Bruhat order of the symmetric group is lexicographically shellable, Proceedings of the American Mathematical Society 82 (1981), 355–358.

    Article  MathSciNet  Google Scholar 

  16. A. Hultman, Fixed points of involutive automorphisms of the Bruhat order, Advances in Mathematics 195 (2005), 283–296.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Hultman, Twisted identities in Coxeter groups, Journal of Algebraic Combinatorics 28 (2008), 313–332.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Incitti, The Bruhat order on the involutions of the symmetric group, Journal of Algebraic Combinatorics 20 (2004), 243–261.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. A. Proctor, Classical Bruhat orders and lexicographic shellability, Journal of Algebra 77 (1982), 104–126.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. S. Putcha, Shellability in reductive monoids, Transactions of the American Mathematical Society 354 (2002), 413–426 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  21. E. M. Rains and M. J. Vazirani, Deformations of permutation representations of Coxeter groups, Journal of Algebraic Combinatorics 37 (2013), 455–502.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. W. Richardson and T. A. Springer, The Bruhat order on symmetric varieties, Geometriae Dedicata 35 (1990), 389–436.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Twelbeck, Shellability of the Bruhat order on Borel orbit closures, Ph.D. Thesis, Tulane University Digital Library, New Orleans, 2013.

    Google Scholar 

  24. J. Upperman and C. R. Vinroot, A weight statistic and partial order on products of m-cycles, Discrete Mathematics 315 (2014), 9–17.

    Article  MathSciNet  Google Scholar 

  25. D. A. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Inventiones Mathematicae 71 (1983), 381–417.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. L. Wachs, Poset topology: tools and applications, in Geometric Combinatorics, IAS/Park City Mathematics Series, Vol. 13, American Mathematical Society, Providence, RI, 2007, pp. 497–615.

    Google Scholar 

  27. L. K. Williams, Shelling totally nonnegative flag varieties, Journal für die Reine und Angewandte Mathematik 609 (2007), 1–21.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahir Bilen Can.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Can, M.B., Cherniavsky, Y. & Twelbeck, T. Lexicographic shellability of the Bruhat-Chevalley order on fixed-point-free involutions. Isr. J. Math. 207, 281–299 (2015). https://doi.org/10.1007/s11856-015-1189-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1189-1

Keywords

Navigation