Skip to main content
Log in

The visits to zero of a random walk driven by an irrational rotation

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give a detailed analysis of the returns to zero of the “deterministic random walk” \({S_n}(x) = \sum\nolimits_{k = 0}^{n - 1} {f(x + k\alpha )} \) where α is a quadratic irrational, \(f(x) = {1_{[\frac{1}{2},1)}}(\{ x\} ) - {1_{[0,\frac{1}{2})}}(\{ x\} )\), and x is sampled uniformly in [0, 1].

The method is to find the asymptotic behavior of the ergodic sums of L 1 functions for linear flows on the infinite staircase surface.

Our methods also provide a new proof of J. Beck’s central limit theorem for S n (0) where n ∈ {1, …,N} is uniform and N → ∞, and they allow us to determine the generic points for certain infinite measure preserving skew products (“cylinder maps”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, On the ergodic theory of non-integrable functions and infinite measure spaces, Israel Journal of Mathematics 27 (1977), 163–173.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Aaronson, On the pointwise ergodic behaviour of transformations preserving infinite measures, Israel Journal of Mathematics 32 (1979), 67–82.

    Article  MathSciNet  Google Scholar 

  3. J. Aaronson, M. Denker and A. M. Fisher, Second order ergodic theorems for ergodic transformations of infinite measure spaces, Proceedings of the American Mathematical Society 114 (1992), 115–127.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Aaronson and M. Keane, The visits to zero of some deterministic random walks, Proceedings of the London Mathematical Society 44 (1982), 535–553.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. Aaronson, H. Nakada, O. Sarig and R. Solomyak, Invariant measures and asymptotics for some skew products, Israel Journal of Mathematics 128 (2002), 93–134.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Aaronson and O. Sarig, Exponential chi squared distributions in infinite ergodic theory, Ergodic Theory and Dynamical Systems 34 (2014), 705–724.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. L. Adler and B. Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, Vol. 98, American Mathematical Society, Providence, RI, 1970.

    Google Scholar 

  8. G. Atkinson, Recurrence of co-cycles and random walks, Journal of the London Mathematical Society 13 (1976), 486–488.

    Article  MATH  Google Scholar 

  9. M. Babillot and F. Ledrappier, Geodesic paths and horocycle flow on abelian covers, in Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Institute of Fundamental Research Studies in Mathematiccs, Vol. 14, Tata Institute of Fundamental Research, Bombay, 1998, pp. 1–32.

    Google Scholar 

  10. M. Babillot and F. Ledrappier, Lalley’s theorem on periodic orbits of hyperbolic flows, Ergodic Theory and Dynamical Systems 18 (1998), 17–39.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel Journal of Mathematics 116 (2000), 29–70.

  12. J. Beck, Randomness of the square root of 2 and the giant leap, Part 1, Periodica Mathematica Hungarica 60 (2010), 137–242.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Beck, Randomness of the square root of 2 and the giant leap, Part 2, Periodica Mathematica Hungarica 62 (2011), 127–246.

  14. A. N. Borodin, On the distribution of random walk local time, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 23 (1987), 63–89.

    MATH  Google Scholar 

  15. M. Boshernitzan and D. Ralston, Continued fractions and heavy sequences, Proceedings of the American Mathematical Society 137 (2009), 3177–3185.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Burton and M. Denker, On the central limit theorem for dynamical systems, Transactions of the American Mathematical Society 302 (1987), 715–726.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.-P. Conze, Equirépartition et ergodicité de transformations cylindriques, in Séminaire de Probabilités, I (Univ. Rennes, Rennes, 1976), Dépt. Math. Informat., Université de Rennes, Rennes, 1976, Exp. No. 2.

    Google Scholar 

  18. J.-P. Conze and M. Keane, FrErgodicité d’un flot cylindrique, in Séminaire de Probabilités, I (Univ. Rennes,Rennes, 1976), Dépt. Math. Informat., Université de Rennes, Rennes, 1976, Exp. No. 5.

    Google Scholar 

  19. W. Doeblin, FrSur deux probl`emes de M. Kolmogoroff concernant les chaînes dénombrables, Bulletin de la Société Mathématique de France 66 (1938), 210–220.

  20. G. K. Eagleson, Some simple conditions for limit theorems to be mixing, Teorija Verojatnosteĭ i ee Primenenija 21 (1976), no. 3, 653–660; English Translation in Theory of Probability and its Applications 21 (1977), 637–642.

    MathSciNet  Google Scholar 

  21. A. M. Fisher, Convex invariant means and a pathwise central limit theorem, Advances in Mathematics 63 (1987), 213–246.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. M. Fisher, Integer Cantor sets and an order-two ergodic theorem, Ergodic Theory and Dynamical Systems 13 (1993), 45–64.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. R. Ford, Automorphic Functions, Second Edition, Chelsea Publishing, New York, 1951.

    Google Scholar 

  24. Y. Guivarc’h and J. Hardy, Théor`emes limites pour une classe de chanes de Markov et applications aux difféomorphismes d’Anosov, Annels de l’Institut Henri Poincaré. Probabilités et Statistiques 24 (1988), 73–98.

    MATH  MathSciNet  Google Scholar 

  25. M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle `a des rotations, Publications Mathématiques. Institut de Hautes Études Scientifiques 49 (1979), 5–233.

    Article  MATH  MathSciNet  Google Scholar 

  26. W. P. Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase surface, Discrete and Continuous Dynamical Systems. Series A 33 (2013), 4341–4347.

  27. W. P. Hooper and B. Weiss, Generalized staircases: recurrence and symmetry, Annales de l’Institut Fourier 62 (2012), 1581–1600.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. Huveneers, Subdiffusive behavior generated by irrational rotations, Ergodic Theory and Dynamical Systems 29 (2009), 1217–1233

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 69 (1985), 461–478.

  30. H. Kesten, Uniform distribution mod 1, Annals of Mathematics 71 (1960), 445–471.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Ya. Khinchin, Continued Fractions, With a Preface by B. V. Gnedenko, Reprint of the 1964 Translation, Dover Publications, Mineola, NY, 1997.

  32. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Dover Publishing, Mineola, New York, 2006.

    Google Scholar 

  33. F. Ledrappier and O. Sarig, Unique ergodicity for non-uniquely ergodic horocycle flows, Discrete and Continuous Dynamical Systems 16 (2006), 411–433.

    Article  MATH  MathSciNet  Google Scholar 

  34. F. Ledrappier and O. Sarig, Fluctuations of ergodic sums for horocycle flows on Zd-covers of finite volume surfaces, Discrete and Continuous Dynamical Systems 22 (2008), 247–325.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. V. Nagaev, More exact limit theorems for homogeneous Markov chains, Teorija Verojatnosteĭ i ee Primenenija 6 (1961), 67–86.

    MathSciNet  Google Scholar 

  36. V. P. Leonov, On the dispersion of time means of a stationary stochastic process, Teorija Verojatnosteĭ i ee Primenenija 6 (1961), 93–101.

  37. H. Nakada, Piecewise linear homeomorphisms of type III and the ergodicity of cylinder flows, Keio Mathematical Seminar Reports 7 (1982), 29–40.

    MATH  MathSciNet  Google Scholar 

  38. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187–188 (1990).

  39. Y. Peres, A combinatorial application of the maximal ergodic theorem, Bulletin of the London Mathematical Society 20 (1988), 248–252.

    Article  MATH  MathSciNet  Google Scholar 

  40. K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Mathematics, Vol. 2, Cambridge University Press, Cambridge, 1983.

    Book  MATH  Google Scholar 

  41. W. Philipp and W. Stout, Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs of the American Mathematical Society 161 (1975).

  42. D. Ralston, \(\frac{1}{2}\) -heavy sequences driven by rotation, Monatshefte für Mathematic. DOI 10.1007/s00605-014-0663-y.

  43. L. Roçadas and J. Schoißengeier, On the local discrepancy of (nα)-sequences, Journal of Number Theory 131 (2011), 1492–1497.

    Article  MATH  MathSciNet  Google Scholar 

  44. D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, Vol. 5, Addison-Wesley Publishing Co., Reading, MA, 1978.

    MATH  Google Scholar 

  45. O. M. Sarig, Unique ergodicity for infinite measures, in Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1777–1803.

    Google Scholar 

  46. O. Sarig and B. Schapira, The generic points for the horocycle flow on a class of hyperbolic surfaces with infinite genus, International Mathematics Research Notices 2008, Art. ID rnn 086.

  47. K. Schmidt, A cylinder flow arising from irregularity of distribution, Compositio Mathematica 36 (1978), 225–232.

  48. D. Volný, Invariance principles and Gaussian approximation for strictly stationary processes, Transactions of the American Mathematical Society 351 (1999), 3351–3371.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Avila.

Additional information

Partially supported by the ERC Starting Grant “Quasiperiodic” and by the Balzan project of Jacob Palis.

Partially supported by the NSF grant DMS 1101635.

Supported by the Kupcinet-Getz summer program at the Weizmann Institute

Partially supported by ERC Starting Grant “ErgodicNonCompact”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, A., Dolgopyat, D., Duryev, E. et al. The visits to zero of a random walk driven by an irrational rotation. Isr. J. Math. 207, 653–717 (2015). https://doi.org/10.1007/s11856-015-1186-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1186-4

Keywords

Navigation