Skip to main content
Log in

On the KŁR conjecture in random graphs

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The KŁR conjecture of Kohayakawa, Łuczak, and Rödl is a statement that allows one to prove that asymptotically almost surely all subgraphs of the random graph G n,p , for sufficiently large p:= p(n), satisfy an embedding lemma which complements the sparse regularity lemma of Kohayakawa and Rödl. We prove a variant of this conjecture which is sufficient for most known applications to random graphs. In particular, our result implies a number of recent probabilistic versions, due to Conlon, Gowers, and Schacht, of classical extremal combinatorial theorems. We also discuss several further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Allen, Dense H-free graphs are almost (χ(H)-1)-partite, Electronic Journal of Combinatorics 17 (2010), Research Paper 21, 11 pp. (electronic).

  2. P. Allen, J. Böttcher, S. Griffiths, Y. Kohayakawa and R. Morris, The chromatic thresholds of graphs, Advances in Mathematics 235 (2013), 261–295.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Alon, A. Coja-Oghlan, H. Hàn, M. Kang, V. Rödl and M. Schacht, Quasi-randomness and algorithmic regularity for graphs with general degree distributions, SIAM Journal on Computing 39 (2010), 2336–2362.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, Journal of Algorithms 16 (1994), 80–109.

    Article  MATH  Google Scholar 

  5. N. Alon and J. H. Spencer, The Probabilistic Method, Third edition, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., Hoboken, NJ, 2008.

    Book  MATH  Google Scholar 

  6. N. Alon and B. Sudakov, H-free graphs of large minimum degree, Electronic Journal of Combinatorics 13 (2006), Research Paper 19, 9 pp. (electronic).

  7. N. Alon and R. Yuster, H-factors in dense graphs, Journal of Combinatorial Theory. Series B 66 (1996), 269–282.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Andrásfai, P. Erdős and V. T. Sós, On the connection between chromatic number, maximal clique and minimal degree of a graph, Discrete Mathematics 8 (1974), 205–218.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Balogh, C. Lee and W. Samotij, Corrádi and Hajnal’s theorem for sparse random graphs, Combinatorics, Probability and Computing 21 (2012), 23–55.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs, submitted, Journal of the American Mathematical Society, accepted, arXiv:1204.6530v1 [math.CO].

  11. M. Behrisch, Random graphs without a short cycle, Master’s thesis, Humboldt-Universität zu Berlin, 2002.

  12. B. Bollobás, Relations between sets of complete subgraphs, in Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, Vol. 15, Utilitas Mathematica, Winnipeg, MB, 1976, pp. 79–84.

    Google Scholar 

  13. S. Brandt and S. Thomassé, Dense triangle-free graphs are four-colorable: a solution to the Erdős-Simonovits problem, Journal of Combinatorial Theory. Series B, to appear.

  14. D. Conlon, J. Fox and Y. Zhao, Extremal results in sparse pseudorandom graphs, Advances in Mathematics, to appear, arXiv:1204.6645v1 [math.CO].

  15. D. Conlon and W. T. Gowers, Combinatorial theorems in sparse random sets, submitted, arXiv:1011.4310v1 [math.CO].

  16. D. Conlon and J. Fox, Graph removal lemmas, in Surveys in Combinatorics 2013, London Mathematical Societyy Lecture Note Series, Vol. 409, Cambridge University Press, Cambridge, 2013, pp. 1–49.

    Chapter  Google Scholar 

  17. D. Conlon, J. Fox and B. Sudakov, An approximate version of Sidorenko’s conjecture, Geometric and Functional Analysis 20 (2010), 1354–1366.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Conlon, H. Hàn, Y. Person and M. Schacht, Weak quasi-randomness for uniform hypergraphs, Random Structures & Algorithms 40 (2012), 1–38.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Mathematica Academiae Scientiarum Hungaricae 14 (1963), 423–439.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society 2 (1952), 69–81.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Erdős, On a theorem of Rademacher-Turán, Illinois Journal of Mathematics 6 (1962), 122–127.

    MathSciNet  Google Scholar 

  22. P. Erdős, On the number of complete subgraphs and circuits contained in graphs, Časopis Pro Pěstování Matematiky 94 (1969), 290–296.

    Google Scholar 

  23. P. Erdős, P. Frankl and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs and Combinatorics 2 (1986), 113–121.

    Article  MathSciNet  Google Scholar 

  24. P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181–192.

    Article  MathSciNet  Google Scholar 

  25. P. Erdős and A. H. Stone, On the structure of linear graphs, Bulletin of the American Mathematical Society 52 (1946), 1087–1091.

    Article  MathSciNet  Google Scholar 

  26. D. C. Fisher, Lower bounds on the number of triangles in a graph, Journal of Graph Theory 13 (1989), 505–512.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Fox, A new proof of the graph removal lemma, Annals of Mathematics 174 (2011), 561–579.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Friedgut, V. Rödl and M. Schacht, Ramsey properties of random discrete structures, Random Structures & Algorithms 37 (2010), 407–436.

    Article  MATH  MathSciNet  Google Scholar 

  29. Z. Füredi, Extremal hypergraphs and combinatorial geometry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 1343–1352.

    Chapter  Google Scholar 

  30. S. Gerke, Y. Kohayakawa, V. Rödl and A. Steger, Small subsets inherit sparse ∈-regularity, Journal of Combinatorial Theory. Series B 97 (2007), 34–56.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Gerke, M. Marciniszyn and A. Steger, A probabilistic counting lemma for complete graphs, Random Structures & Algorithms 31 (2007), 517–534.

    Article  MATH  MathSciNet  Google Scholar 

  32. S. Gerke, H. J. Prömel, T. Schickinger, A. Steger and A. Taraz, K 4 -free subgraphs of random graphs revisited, Combinatorica 27 (2007), 329–365.

    Article  MATH  MathSciNet  Google Scholar 

  33. S. Gerke, T. Schickinger and A. Steger, K 5 -free subgraphs of random graphs, Random Structures & Algorithms 24 (2004), 194–232.

    Article  MATH  MathSciNet  Google Scholar 

  34. S. Gerke and A. Steger, The sparse regularity lemma and its applications, in Surveys in Combinatorics 2005, London Mathematical Society Lecture Note Series, Vol. 327, Cambridge University Press, Cambridge, 2005, pp. 227–258.

    Chapter  Google Scholar 

  35. M. Goldwurm and M. Santini, Clique polynomials have a unique root of smallest modulus, Information Processing Letters 75 (2000), 127–132.

    Article  MathSciNet  Google Scholar 

  36. A. W. Goodman, On sets of acquaintances and strangers at any party, American Mathematical Monthly 66 (1959), 778–783.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. T. Gowers, Quasirandomness, counting and regularity for 3-uniform hypergraphs, Combinatorics, Probability and Computing 15 (2006), 143–184.

    Article  MATH  MathSciNet  Google Scholar 

  38. W. T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Annals of Mathematics 166 (2007), 897–946.

    Article  MATH  MathSciNet  Google Scholar 

  39. W. T. Gowers, Decompositions, approximate structure, transference, and the Hahn-Banach theorem, Bulletin of the London Mathematical Society 42 (2010), 573–606.

    Article  MATH  MathSciNet  Google Scholar 

  40. B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167 (2008), 481–547.

    Article  MATH  MathSciNet  Google Scholar 

  41. R. Häggkvist, Odd cycles of specified length in nonbipartite graphs, in Graph theory (Cambridge, 1981), North-Holland Mathematics Studies, Vol. 62, North-Holland, Amsterdam, 1982, pp. 89–99.

    Google Scholar 

  42. A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, in Combinatorial Theory and its Applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, Amsterdam, 1970, pp. 601–623.

    Google Scholar 

  43. H. Huang, C. Lee and B. Sudakov, Bandwith theorem for random graphs, Journal of Combinatorial Theory. Series B 102 (2012), 14–37.

    Article  MATH  MathSciNet  Google Scholar 

  44. S. Janson, K. Oleszkiewicz and A. Ruciński, Upper tails for subgraph counts in random graphs, Israel Journal of Mathematics 142 (2004), 61–92.

    Article  MATH  MathSciNet  Google Scholar 

  45. G. P. Jin, Triangle-free four-chromatic graphs, Discrete Mathematics 145 (1995), 151–170.

    Article  MATH  MathSciNet  Google Scholar 

  46. H. A. Kierstead and A. V. Kostochka, A short proof of the Hajnal-Szemerédi theorem on equitable colouring, Combinatorics, Probability and Computing 17 (2008), 265–270.

    Article  MATH  MathSciNet  Google Scholar 

  47. Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, in Foundations of Computational Mathematics (Rio de Janeiro, 1997), Springer, Berlin, 1997, pp. 216–230.

    Google Scholar 

  48. Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey properties involving cycles, Random Structures & Algorithms 11 (1997), 245–276.

    Article  MATH  MathSciNet  Google Scholar 

  49. Y. Kohayakawa, T. Łuczak and V. Rödl, On K 4 -free subgraphs of random graphs, Combinatorica 17 (1997), 173–213.

    Article  MATH  MathSciNet  Google Scholar 

  50. Y. Kohayakawa and V. Rödl, Regular pairs in sparse random graphs. I, Random Structures & Algorithms 22 (2003), 359–434.

    Article  MATH  MathSciNet  Google Scholar 

  51. Y. Kohayakawa and V. Rödl, Szemerédi’s regularity lemma and quasi-randomness, in Recent Advances in Algorithms and Combinatorics, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Vol. 11, Springer, New York, 2003, pp. 289–351.

    Chapter  Google Scholar 

  52. Y. Kohayakawa, T. Łuczak and V. Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arithmetica 75 (1996), 133–163.

    MATH  MathSciNet  Google Scholar 

  53. Y. Kohayakawa, B. Nagle, V. Rödl and M. Schacht, Weak hypergraph regularity and linear hypergraphs, Journal of Combinatorial Theory. Series B 100 (2010), 151–160.

    Article  MATH  MathSciNet  Google Scholar 

  54. Y. Kohayakawa, V. Rödl and M. Schacht, The Turán theorem for random graphs, Combinatorics, Probability and Computing 13 (2004), 61–91.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. Komlós, Tiling Turán theorems, Combinatorica 20 (2000), 203–218.

    Article  MATH  MathSciNet  Google Scholar 

  56. J. Komlós, G. N. Sárközy and E. Szemerédi, Proof of the Alon-Yuster conjecture, Discrete Mathematics 235 (2001), 255–269.

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Komlós, A. Shokoufandeh, M. Simonovits and E. Szemerédi, The regularity lemma and its applications in graph theory, in Theoretical Aspects of Computer Science (Tehran, 2000), Lecture Notes in Computer Science, Vol. 2292, Springer, Berlin, 2002, pp. 84–112.

    Chapter  Google Scholar 

  58. D. Kühn and D. Osthus, Embedding large subgraphs into dense graphs, in Surveys in Combinatorics 2009, London Mathematical Society Lecture Note Series, Vol. 365, Cambridge University Press, Cambridge, 2009, pp. 137–167.

    Chapter  Google Scholar 

  59. D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), 65–107.

    Article  MathSciNet  Google Scholar 

  60. C. Lee and B. Sudakov, Dirac’s theorem for random graphs, Random Structures & Algorithms 41 (2012), 293–305.

    Article  MATH  MathSciNet  Google Scholar 

  61. J. Li and B. Szegedy, On the logarithmic calculus and Sidorenko’s conjecture, Combinatorica, accepted, arXiv:1107.1153 [math.CO].

  62. L. Lovász and M. Simonovits, On the number of complete subgraphs of a graph. II, in Studies in Pure Mathematics, Birkhäuser, Basel, 1983, pp. 459–495.

    Chapter  Google Scholar 

  63. T. Łuczak, On triangle-free random graphs, Random Structures & Algorithms 16 (2000), 260–276.

    Article  MATH  MathSciNet  Google Scholar 

  64. T. Łuczak, Randomness and regularity, in International Congress of Mathematicians. Vol. III, European Mathematical Society, Zürich, 2006, pp. 899–909.

    Google Scholar 

  65. B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs, Random Structures & Algorithms 28 (2006), 113–179.

    Article  MATH  MathSciNet  Google Scholar 

  66. V. Nikiforov, The number of cliques in graphs of given order and size, Transactions of the American Mathematical Society 363 (2011), 1599–1618.

    Article  MATH  MathSciNet  Google Scholar 

  67. F. P. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society 30 (1930), 264–286.

    Article  MathSciNet  Google Scholar 

  68. A. A. Razborov, Flag algebras, Journal of Symbolic Logic 72 (2007), 1239–1282.

    Article  MATH  MathSciNet  Google Scholar 

  69. A. A. Razborov, On the minimal density of triangles in graphs, Combinatorics, Probability and Computing 17 (2008), 603–618.

    Article  MATH  MathSciNet  Google Scholar 

  70. C. Reiher, The clique density theorem, submitted, arXiv:1212.2454v1 [math.CO].

  71. O. Reingold, L. Trevisan, M. Tulsiani and S. P. Vadhan, Dense subsets of pseudorandom sets, in Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, (FOCS 2008), IEEE Computer Society Press, Los Alamitos, 2008, pp. 76–85.

    Chapter  Google Scholar 

  72. V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, Journal of the American Mathematical Society 8 (1995), 917–942.

    Article  MATH  MathSciNet  Google Scholar 

  73. V. Rödl and M. Schacht, Regularity lemmas for graphs, in Fete of Combinatorics and Computer Science, Bolyai Society Mathematical Studies, Vol. 20, János Bolyai Mathematical Society, Budapest, 2010, pp. 287–325.

    Chapter  Google Scholar 

  74. V. Rödl and J. Skokan, Regularity lemma for k-uniform hypergraphs, Random Structures & Algorithms 25 (2004), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  75. K. F. Roth, On certain sets of integers, Journal of the London Mathematical Society 28 (1953), 104–109.

    Article  MATH  Google Scholar 

  76. I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloquia Mathematica Societatis János Bolyai, Vol. 18, North-Holland, Amsterdam-New York, 1978, pp. 939–945.

    Google Scholar 

  77. W. Samotij, Stability results for discrete random structures, Random Structures & Algorithms 44 (2014), 269–289.

    Article  MATH  MathSciNet  Google Scholar 

  78. D. Saxton and A. Thomason, Hypergraph containers, submitted, arXiv:1204.6595v2 [math.CO].

  79. M. Schacht, Extremal results for discrete random structures, submitted.

  80. A. Scott, Szemerédi’s regularity lemma for matrices and sparse graphs, Combinatorics, Probability and Computing 20 (2011), 455–466.

    Article  MATH  MathSciNet  Google Scholar 

  81. M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp. 279–319.

    Google Scholar 

  82. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica 27 (1975), 199–245.

    MATH  MathSciNet  Google Scholar 

  83. E. Szemerédi, Regular partitions of graphs, in Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloques Internationaux du Centre National de la Recherche Scientifique, Vol. 260, CNRS, Paris, 1978, pp. 399–401.

    Google Scholar 

  84. T. Tao, A variant of the hypergraph removal lemma, Journal of Combinatorial Theory. Series A 113 (2006), 1257–1280.

    Article  MATH  MathSciNet  Google Scholar 

  85. K. Zarankiewicz, Sur les relations symétriques dans l’ensemble fini, Colloquium Mathematicae 1 (1947), 10–14.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Conlon.

Additional information

Research supported by a Royal Society University Research Fellowship.

Research supported by a Royal Society 2010 Anniversary Research Professorship.

Research supported in part by a Trinity College JRF.

Research supported by the Heisenberg programme of the DFG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conlon, D., Gowers, W.T., Samotij, W. et al. On the KŁR conjecture in random graphs. Isr. J. Math. 203, 535–580 (2014). https://doi.org/10.1007/s11856-014-1120-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-014-1120-1

Keywords

Navigation