Skip to main content
Log in

Infinitesimally small spheres and conformally invariant metrics

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

The modulus metric (also called the capacity metric) on a domain D ⊂ ℝn can be defined as μD(x, y) = inf{cap (D, γ)}, where cap (D, γ) stands for the capacity of the condenser (D, γ) and the infimum is taken over all continua γ ⊂ D containing the points x and y. It was conjectured by J. Ferrand, G. Martin and M. Vuorinen in 1991 that every isometry in the modulus metric is a conformal mapping. In this note, we confirm this conjecture and prove new geometric properties of surfaces that are spheres in the metric space (D, γD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Betsakos and S. Pouliasis, Equality cases for condenser capacity inequalities under symmetrization, Ann. Univ. Mariae Curie-Sklodowska Sect. A 66 (2012), 1–24.

    MathSciNet  MATH  Google Scholar 

  2. D. Betsakos and S. Pouliasis, Isometries for the modulus metric are quasiconformal mappings, Trans. Amer. Math. Soc. 372 (2019), 2735–2752.

    Article  MathSciNet  Google Scholar 

  3. F. Brock and A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Amer. Math. Soc. 352 (2000), 1759–1796.

    Article  MathSciNet  Google Scholar 

  4. V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014.

    Book  Google Scholar 

  5. J. Ferrand, Conformal capacities and conformally invariant functions on Riemannian manifolds, Geom. Dedicata 61 (1996), 103–120.

    Article  MathSciNet  Google Scholar 

  6. J. Ferrand, G. J. Martin and M. Vuorinen, Lipschitz conditions in conformally invariant metrics, J. Anal. Math. 56 (1991), 187–210.

    Article  MathSciNet  Google Scholar 

  7. F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393.

    Article  MathSciNet  Google Scholar 

  8. F. W. Gehring, Extremal length definitions for the conformal capacity of rings in space, Michigan Math. J. 9 (1962), 137–150.

    Article  MathSciNet  Google Scholar 

  9. J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Dover, Mineola, NY, 2006.

    MATH  Google Scholar 

  10. Yu. G. Reshetnyak, On conformal mappings of a space, Dokl. Akad. Nauk SSSR 130 (1960), 1196–1198 (Russian); Engl. transl.: Soviet Math. Dokl. 1 (1960), 153–155.

    MathSciNet  Google Scholar 

  11. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, American Mathematical Society, Providence, RI, 1989.

    Book  Google Scholar 

  12. S. Rickman, Quasiregular Mappings, Springer, Berlin, 1993.

    Book  Google Scholar 

  13. A. Yu. Solynin, Continuous symmetrization of sets, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 185 (1990), Anal. Teor. Chisel i Teor. Funktsii. 10, 125–139, 186; Engl. transl.: J. Soviet Math. 59 (1992), 1214–1221.

  14. A. Yu. Solynin, Polarization and functional inequalities, Algebra i Analiz 8 (1996), 148–185; Engl. transl.: St. Petersburg Math. J. 8 (1997), 1015–1038.

    MathSciNet  MATH  Google Scholar 

  15. A. Yu. Solynin, Moduli and extremal metric problems, Algebra i Analiz 11 (1999), 3–86; Engl. transl.: St. Petersburg Math. J. 11 (2000), 1–65.

    MathSciNet  Google Scholar 

  16. A. Yu. Solynin, Continuous symmetrization via polarization, Algebra i Analiz 24 (2012), 157–222; Engl. transl.: St. Petersburg Math. J. 24 (2013), 117–166.

    MathSciNet  Google Scholar 

  17. M. Vuorinen, Conformal invariants andquasiregular mappings, J. Anal. Math. 45 (1985), 69–115.

    Article  Google Scholar 

  18. M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Springler, Berlin, 1988.

    Book  Google Scholar 

  19. V. Wolontis, Properties of conformal invariants, Amer. J. Math. 74 (1952), 587–606.

    Article  MathSciNet  Google Scholar 

  20. S. Yang, Monotone functions and extremal functions for condensers in \(\overline{\mathbb{R}{{^n}}}\), Ann. Acad. Sci. Fenn. Ser. AI Math. 16 (1991), 95–112.

    Article  MathSciNet  Google Scholar 

  21. W. P. Ziemer, Extremal length andp-capacity, Michigan Math. J. 16 (1969), 43–51.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yu. Solynin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouliasis, S., Solynin, A.Y. Infinitesimally small spheres and conformally invariant metrics. JAMA 143, 179–205 (2021). https://doi.org/10.1007/s11854-021-0152-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0152-9

Navigation