Skip to main content
Log in

Improved estimates for polynomial Roth type theorems in finite fields

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We prove that, under certain conditions on the function pair ϕ1 and ϕ2, the bilinear average \({q^{- 1}}\sum\nolimits_{y \in {\mathbb{F}_q}} {{f_1}\left({x + {\varphi _2}\left(y \right)} \right){f_2}\left({x + {\varphi _2}\left(y \right)} \right)} \) along the curve (ϕ1, ϕ2) satisfies a certain decay estimate. As a consequence, Roth type theorems hold in the setting of finite fields. In particular, if \({\varphi _1},{\varphi _2} \in {\mathbb{F}_q}\left[X \right]\) with ϕ1(0) = ϕ2(0) = 0 are linearly independent polynomials, then for any \(A \subset {\mathbb{F}_q},\left| A \right| = \delta q\) with δ > cq−1/12, there are ≳ δ3q2 triplets x, x1(y), x + ϕ2(y) ∈ A. This extends a recent result of Bourgain and Chang who initiated this type of problems, and strengthens the bound in a result of Peluse, who generalized Bourgain and Chang’s work. The proof uses discrete Fourier analysis and algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Bergelson, Ergodic Ramsey theory—an update, in Ergodic Theory of ℤdActions, Cambridge University Press, Cambridge, 1996, pp. 1–61.

    MATH  Google Scholar 

  2. J. Blasiak, T. Church, H. Cohn, J. Grochow, E. Naslund, W. Sawin and C. Umans, On cap sets and the group-theoretic approach to matrix multiplication, Discrete Anal. (2017), paper no. 3.

  3. E. Bombieri, On exponential sums in finite fields, Amer. J. Math. 88 (1966), 71–105.

    Article  MathSciNet  Google Scholar 

  4. J. Bourgain and M. C. Chang, Nonlinear Roth type theorems in finite fields, Israel J. Math. 221 (2017), 853–867.

    Article  MathSciNet  Google Scholar 

  5. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37–41.

    Article  MathSciNet  Google Scholar 

  6. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307.

    Article  MathSciNet  Google Scholar 

  7. J. Ellenberg and D. Gijswijt, On large subsets of \(\mathbb{F}_q^n\)with no three-term arithmetic progression, Ann. of Math. (2) 185 (2017), 339–343.

    Article  MathSciNet  Google Scholar 

  8. E. Fouvry, E. Kowalski and P. Michel, A study in sums of products, Philos. Trans. Roy. Soc. A 373 (2015), Article ID 20140309.

  9. N. Frantzikinakis and B. Kra, Polynomial averages converge to the product of integrals, Israel J. Math. 148 (2005), 267–276.

    Article  MathSciNet  Google Scholar 

  10. L. Hörmander, Oscillatory integrals and multipliers on FLp, Ark. Mat. 11 (1973), 1–11.

    Article  MathSciNet  Google Scholar 

  11. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  12. N. Katz, Sommes exponentielles, Société Mathématique de France, Paris, 1980.

    MATH  Google Scholar 

  13. N. Katz, Estimates for “singular” exponential sums, Internat. Math. Res. Notices (1999), 875–899.

    Google Scholar 

  14. X. Li, Bilinear Hilbert transforms along curves I: The monomial case, Anal. PDE 6 (2013), 197–220.

    Article  MathSciNet  Google Scholar 

  15. S. Peluse, Three-term polynomial progressions in subsets of finite fields, Israel J. Math. 228 (2018), 379–405.

    Article  MathSciNet  Google Scholar 

  16. I. D. Shkredov On monochromatic solutions of some nonlinear equations in ℤ/pℤ, Mat. Zametki 88 (2010), 625–634; translation in Math. Notes 88 (2010), 603–611.

    Article  MathSciNet  Google Scholar 

  17. Stacks project authors, The stacks project, https://stacks.math.columbia.edu (2018)

  18. T. Tao, Expanding polynomials over finite fields of large characteristic, and a regularity lemma for definable sets, Contr. to Disc. Math. 10 (2014), 22–98.

    MathSciNet  MATH  Google Scholar 

  19. A. Weil, On the Riemann hypothesis in function fields, Proc. Nat. Acad. Sci. USA. 27 (1941), 345–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, D., Li, X. & Sawin, W. Improved estimates for polynomial Roth type theorems in finite fields. JAMA 141, 689–705 (2020). https://doi.org/10.1007/s11854-020-0113-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-020-0113-8

Navigation